
Fileman 22.2

Author: Sam Habiel, VISTA Expertise Network
Update: Frederick D. S. Marshall, VISTA Expertise Network

Introduction
This paper presents a new version of Fileman, MSC Fileman 22.2.

Fileman is a database management system written in Mumps. Astute readers will note that Mumps
already provides a storage capabilities consisting of saving data as sparse multi-dimensional arrays.
Fileman builds on top of Mumps a full database management system with capabilities including:

• Abstracting Mumps multi-dimensional arrays into user-friendly files

• Providing user-defined data definitions for all data elements

• Providing indexing for data stored in the Mumps arrays for easy retrieval

• Providing interactive data behavior (using triggers, mail messages, or Mumps style cross-
references)

• Providing the User Interface for manipulation and reporting of the data

• Providing tools for sending data to other Fileman systems.

• Providing programmer tools for use to manipulate Fileman stored data.

• Providing a security framework for data access.

• Providing a Structured Query Language (SQL) interface to the data.

Fileman is indefinitely extensible. Virtually every aspect of it can be customized by writing your own
code and calling it from a Fileman hook. For example, you can write your own search logic for a file
and have Fileman execute that rather than the default search logic.

Fileman is a hybrid relational/hierarchical database management system. It can store data in a relational
manner (like a traditional SQL based database) or in a hierarchical manner (like an XML database).

Fileman can be installed by itself without the VISTA Kernel, but doing so deprives you of features such
as Operating System file level interaction, sending of mail messages, and use of the Remote Procedure
broker to access Fileman data from other programming languages via the Transmission Control
Protocol (TCP) over Internet Protocol (IP) version 4. It's expected that users who use Standalone
Fileman will replace these functions on their own.

Installation Instructions
The software is supplied as a set of routines packaged in Routine Output (RSA) format.

The latest version can be downloaded from OSEHRA's public repository.

https://github.com/OSEHRA/fileman-22p2

https://github.com/OSEHRA/fileman-22p2

As of the time of this writing, the RSA file can be obtained by getting the response of this URL:

https://github.com/OSEHRA/fileman-22p2/blob/master/VA-FILEMAN-22P2T1.RSA?raw=true

Detailed installation instructions are supplied in a manual accompanying this journal article.

Configuration
Initial configuration of Fileman is done from Mumps by running the routine DINIT. The major
configuration item there is choosing your Mumps Operating System (i.e., your Mumps Virtual
Machine). You need to answer this correctly in order for Fileman to function properly. The currently
supported Operating Systems are:

• CACHE/OpenM

• DSM for OpenVMS

• DTM-PC

• GT.M(UNIX)

• GT.M(VAX)

• MSM

• OTHER

As of this version, only Cache/OpenM and GT.M(Unix) are fully supported and tested. The others are
there because they still by and large work, but they are unsupported by the Fileman development team.

More details on running DINIT can be found in the Installation Guide.

Other configuration items are system specific and can be set using Mumps programmer mode:

• ^DD(“STRING_LIMIT”) sets the maximum length of a global node. By default, it's 255,
following the latest Mumps Standard (MUMPS 95). In order to use Fileman with lengthy
vocabularies such as SNOMED or RxNorm, it may be necessary to change the length of the
maximum string limit to fit the longest field supplied by the database.

• ^DD(“DILOCKTM”) sets the standard lock time. This may be needed in clustered Cache
environments where lock times include the time for the connection to the remote machine to be
made.

• ^DD(“DD”) sets the date/time format to be used by Fileman. This could be changed to produce
a different locale appropriate date/time output.

Documentation
Most of the documentation is in the process of being written. The planned documentation will consist
of:

• Release Notes

• Value Proposition

• Install Guide

https://github.com/OSEHRA/fileman-22p2/blob/master/VA-FILEMAN-22P2T1.RSA?raw=true

• Getting Started Manual

• Advanced User Manual

• User Reference Manual

• Programmer Reference Manual

• Security and Privacy Manual

• Technical Manual

• Key and Index Tutorial

• Screenman Tutorial

Notable new features in Fileman 22.2
This section includes the new features. Bug fixes are not mentioned. They are documented in the
Release Notes.

Screenman enhancements
Screenman is a screen oriented editor which mirrors a Graphical User Interface but still runs on a
terminal emulator.

In version 22.2, Screenman has had several major enhancements. We added the capability of the
Screenman to have customizable colors for each type of presentable element. In addition, Screenman
can now understand DEC/XTERM X11 mouse reporting so that users can use a mouse to point and
click. Support for this is not universal among terminal emulators; consult your terminal emulator's
documentation to see if this feature is supported. Our experience has been that Putty, gnome-terminal,
konsole support it with no or little configuration. On Attachmate Reflection, you need to set your
terminal emulation type to “Linux Console” for this to work.

Two more minor changes: Screenman now includes a “Previous Page” command, which was omitted in
the original version; and Screenman now shows the presence of text in a Word Processing field by a
“+” sign.

Below are two screen shots comparing the before (v. 22.0) and after (v. 22.2) for Screenman.

Internationalization and Localization
Fileman is more capable that ever in the arena of Internationalization (i18n) and Localization (l10n).
The following new features are available:

• Fileman can now have data dictionary elements in any language and will display the correct
language depending on the user's DUZ(“LANG”) value.

• Fileman handles dates consistently based on the value of the ^DD(“DD”) node.

• Fileman seamlessly handles all forms of non-US Dates using the “I” flag to %DT.

• Fileman contains an optional expanded language file that contains all the ISO-632 languages .

• Fileman uppercasing code is language specific.

Interested users can find how to translate data dictionary elements by running the routine DIALOGZ
from the top after setting their DUZ(“LANG”) to the Language Internal Entry Number (IEN).
Convenience entry points also exist for several language, including GERMAN^DIALOGZ and
SPANISH^DIALOGZ.

dev>D SPANISH^DIALOGZ

Modify what File: VA FILEMAN CHANGE// 2 PATIENT (11 entries)

SPANISH translation of PATIENT:	

The value of ^DD(“DD”) without any user change is by default S Y=$$FMTE^DILIBF(Y,"5U"). This
entry point checks if a language (File .85) has entry for field 10.21, DATE/TIME FORMAT (FMTE). If
the language isn't defined in DUZ(“LANG”) or is English (DUZ(“LANG”)=1), the default logic is
executed.

The expanded language file can be installed by running ^DMLAINIT. This is already noted in the
Install Manual.

Users are referred to the Programmer Manual for %DT documentation for instructions on how to use it
with the “I” flag.

Uppercasing code for Fileman is located at $$UP^DILIBF.

Improved Data Analysis Tools
Fileman has a better Data Analysis and Data Integrity Check tools. These include.

• Dangling Pointer reporter, currently not invokable from inside Fileman but invokable using
^DIVRPTR.

• Find Pointers Into a File

• Improved Verify Fields Option

• A Data Dictionary comparer for comparison of Data Dictionaries across different Mumps
Instances.

Dangling Pointer Reporter
Here's an example of running this:

v22p2>D	 ^DIVRPTR

	 START	 WITH	 What	 File:	 BROKEN	 FILE//	 	 	 	 	 	 (9	 entries)

	 	 	 	 	 	 GO	 TO	 What	 File:	 BROKEN	 FILE//	 	 	 	 	 	 (9	 entries)

DEVICE:	 HOME//	 ;;99

DANGLING	 POINTER	 REPORT

FILE	 1009.801	 	 'POINTER'	 (Field	 #.02	 in	 File	 #1009.801)

BROKEN	 FILE:	 `2	 	 BAD	 POINTER	 	 >>No	 '6666'	 in	 LANGUAGE	 File<<

Find Pointers Into a File
This is a new menu option under the DATA DICTIONARY UTILITIES menu.

Select	 OPTION:	 DATA	 DICTIONARY	 UTILITIES	 	

Select	 DATA	 DICTIONARY	 UTILITY	 OPTION:	 ?

	 	 	 	 Answer	 with	 DATA	 DICTIONARY	 UTILITY	 OPTION	 NUMBER,	 or	 NAME

	 	 	 Choose	 from:

	 	 	 1	 	 	 	 	 	 	 	 	 	 	 	 LIST	 FILE	 ATTRIBUTES

	 	 	 2	 	 	 	 	 	 	 	 	 	 	 	 MAP	 POINTER	 RELATIONS

	 	 	 3	 	 	 	 	 	 	 	 	 	 	 	 CHECK/FIX	 DD	 STRUCTURE

	 	 	 4	 	 	 	 	 	 	 	 	 	 	 	 FIND	 POINTERS	 INTO	 A	 FILE

	 	 	

Select	 DATA	 DICTIONARY	 UTILITY	 OPTION:	 4	 	 FIND	 POINTERS	 INTO	 A	 FILE

THIS	 UTILITY	 TRIES	 TO	 FIND	 ALL	 ENTRIES	 IN	 ALL	 FILES	 POINTING	 TO	 A	 CERTAIN	 FILE

Select	 FILE:	 LANGUAGE	 	

	 	 	 	 	 Select	 one	 of	 the	 following:

	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 One	 particular	 LANGUAGE	 Entry

	 	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 	 	 All	 LANGUAGE	 Entries

	 	 	 	 	 	 	 	 	 	 3	 	 	 	 	 	 	 	 	 Non-‐existent	 LANGUAGE	 Entries

Find	 pointers	 to:	 All	 LANGUAGE	 Entries//	

Verify Fields
There are many subtle improvements to the Verify Fields option. There include:

• Better cross reference checking (including checking whether a 30 character limit for a cross-
reference was obeyed)

• Better handling of Date value errors

• Better verification of fields that contain an Output Transform. If a field's contents fail its Input
Transform, the contents and sent through the Output Transform and checked again against the
Input Transform.

An example report follows below.

VERIFY	 FIELDS	 REPORT

KBAN	 BROKEN	 FILE	 FILE	 (#11310003)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JAN	 09,	 2013	 	 14:33	 	 	 	 PAGE	 1

-‐

-‐-‐11310003,.01-‐-‐FIELD	 #.01	 NAME-‐-‐	 	 (FREE	 TEXT)

(CHECKING	 CROSS-‐REFERENCE)

ENTRY#	 	 	 	 NAME	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ERROR

6	 	 	 	 	 	 	 	 	 BAD	 B	 XREF	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "BAD	 B	 XREF"	 not	 properly	 Cross-‐reference

10	 	 	 	 	 	 	 	 THIRTY-‐TWO	 CHARACTER	 LIMIT	 ENTWRONG	 "B"	 CROSS-‐REF	 'BAD	 B	 XREF'

99	 	 	 	 	 	 	 	 99	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DANGLING	 "B"	 CROSS-‐REF	 'BAD	 B	 XREF'

9	 	 	 	 	 	 	 	 	 LOOPY	 OUTPUT	 TRANSFORM	 	 	 	 	 	 	 	 WRONG	 "B"	 CROSS-‐REF	 'LOOPY	 OUTPUT	 TRANS'

10	 	 	 	 	 	 	 	 THIRTY-‐TWO	 CHARACTER	 LIMIT	 ENTDUPLICATE	 "B"	 CROSS-‐REF	 'THIRTY-‐TWO	 CHAR

-‐-‐11310003,.02-‐-‐FIELD	 #.02	 POINTER-‐-‐	 	 (POINTER)

(CHECKING	 CROSS-‐REFERENCE)

2	 	 	 	 	 	 	 	 	 BAD	 POINTER	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 No	 '6666'	 in	 pointed-‐to	 File

7	 	 	 	 	 	 	 	 	 BAD	 C	 (POINTER)	 XREF	 	 	 	 	 	 	 	 	 	 "4"	 not	 properly	 Cross-‐referenced

7	 	 	 	 	 	 	 	 	 BAD	 C	 (POINTER)	 XREF	 	 	 	 	 	 	 	 	 	 WRONG	 "C"	 CROSS-‐REF	 '44'

2	 	 	 	 	 	 	 	 	 BAD	 POINTER	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WRONG	 "C"	 CROSS-‐REF	 '7777'

-‐-‐11310003,.03-‐-‐FIELD	 #.03	 DATE-‐-‐	 	 (DATE)

(CHECKING	 CROSS-‐REFERENCE)

3	 	 	 	 	 	 	 	 	 BAD	 DATE	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "ABCDEF"	 fails	 Input	 Transform

8	 	 	 	 	 	 	 	 	 BAD	 D	 (DATE)	 XREF	 	 	 	 	 	 	 	 	 	 	 	 	 "3220801":	 D	 index	 (#1051)	 not	 properly

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 set

-‐-‐11310003,.04-‐-‐FIELD	 #.04	 SET-‐-‐	 	 (SET	 OF	 CODES)

4	 	 	 	 	 	 	 	 	 BAD	 SET	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "U"	 not	 in	 Set

-‐-‐11310003,.05-‐-‐FIELD	 #.05	 NUMBER-‐-‐	 	 (NUMERIC)

5	 	 	 	 	 	 	 	 	 BAD	 NUMBER	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "ABCDEF"	 fails	 Input	 Transform

-‐-‐11310003,.06-‐-‐FIELD	 #.06	 LOOPY	 OUTPUT	 TRANSFORM-‐-‐	 	 (DATE)

Data Dictionary Comparer
This allows you to compare different instances of VISTA for Data or Data Dictionary changes. This is a
new option under the TRANSFER ENTRIES menu.

Note: Under GT.M, you need to make sure that your Global Directory file only contains absolute path
references for this to work. Using relative paths and environment variables in your Global Directory
file will cause inaccurate behavior.
Note2: In case you are wondering, no, you can't compare a GT.M database against a Cache database.

GTM>S	 DUZ=1	 D	 P^DI

VA	 FILEMAN	 22.2T1

Select	 OPTION:	 TRANSFER	 ENTRIES	 	

Select	 TRANSFER	 OPTION:	 ?

	 	 	 	 Answer	 with	 TRANSFER	 OPTION	 NUMBER,	 or	 NAME

	 	 	 Choose	 from:

	 	 	 1	 	 	 	 	 	 	 	 	 	 	 	 TRANSFER	 FILE	 ENTRIES

	 	 	 2	 	 	 	 	 	 	 	 	 	 	 	 COMPARE/MERGE	 FILE	 ENTRIES

	 	 	 3	 	 	 	 	 	 	 	 	 	 	 	 NAMESPACE	 COMPARE

	 	 	

Select	 TRANSFER	 OPTION:	 3	 	 NAMESPACE	 COMPARE

	 	 UCI:	 /home/sam/emptyENV3/g/mumps.gld

	 START	 WITH	 What	 File:	 RXNCONSO//	 	 	 	 	 	 	 	 	 (202420	 entries)

	 	 	 	 	 	 GO	 TO	 What	 File:	 RXNCONSO//	 	 	 	 	 	 	 	 	 (202420	 entries)

Compare	 to	 what	 UCI:	 //	 /home/sam/emptyENV2/g/mumps.gld

	 	 	 	 	 Select	 one	 of	 the	 following:

	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 DATA	 DICTIONARY	 ONLY

	 	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 	 	 FILE	 ENTRIES	 ONLY

	 	 	 	 	 	 	 	 	 	 3	 	 	 	 	 	 	 	 	 DATA	 DICTIONARY	 AND	 FILE	 ENTRIES

Enter	 response:	 3//	 1	 	 DATA	 DICTIONARY	 ONLY

DISPLAY	 COMPARISON	 ON

JAN	 15,	 2013	 	 SAM'S	 RXNORM	 SITE

	 	 UCI:	 /home/sam/emptyENV3/g/mumps.gld	 	 UCI:	 /home/sam/emptyENV2/g/mumps.gld

-‐

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DATA	 DICTIONARY	 #1009.811	 (RXNCONSO)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 {Missing}

Enhanced Auditing Capabilities
This new version has the following enhanced auditing capabilities:

• Fileman now allows Word Processing fields to be audited

• Data Dictionary changes are automatically audited

• There is a new menu option to show changes done by a specific user on a specific file

To audit word processing fields, use the option OTHER OPTIONS > AUDITING > TURN DATA
AUDIT ON/OFF. You will be asked for the field, and you can choose a word processing field. After
modifying an audited field, you can check for the audit trail using the captioned output of the Inquire
option.

Select	 AUDIT	 OPTION:	 5	 	 TURN	 DATA	 AUDIT	 ON/OFF

Audit	 from	 what	 File:	 TIU	 DOCUMENT//	 	 	 	 	 	 (3	 entries)

Select	 FIELD:	 REPORT	 TEXT	 	 	 	 (word-‐processing)	 	 	

Select	 REPORT	 TEXT	 SUB-‐FIELD:	 .01	 	 REPORT	 TEXT	 	 	

AUDIT:	 YES,	 ALWAYS

To see Data Dictionary changes, use the option OTHER OPTIONS > AUDITING > SHOW PAST
CHANGES TO DD'S. You will be asked to select a date range.

Select	 AUDIT	 OPTION:	 	 	 	 SHOW	 PAST	 CHANGES	 TO	 DD'S

Show	 Data	 Dictionary	 changes	 since:	 First//	 T-‐1	 	 (JAN	 14,	 2013)

DEVICE:	 HOME//	

To see changes done by a specific user, user the option OTHER OPTIONS > AUDITING >
MONITOR A USER.

Select	 AUDIT	 OPTION:	 2	 	 MONITOR	 A	 USER

Select	 a	 USER	 who	 has	 signed	 on	 to	 this	 system:	 `1	 	 MASTER,USER	 	 	 	 	 	 	 	 	 	 	 	

Select	 AUDITED	 File:	 PACKAGE//	 	 	

START	 WITH	 DATE:	 FIRST//	

DEVICE:	 	 	 TELNET

PACKAGE	 RECORDS	 ACCESSED	 BY	 MASTER,USER	 (DUZ=1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Page	 1

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 EARLIEST	 ACCESS	 	 	 	 	 	 	 	 	 	 LATEST	 ACCESS

-‐

VA	 FILEMAN	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JAN	 15,2013@13:27:57	 	 	 	 	

Enhanced Database Server Finder and Lister calls
Both the database server (DBS) finder (FIND^DIC) and lister (LIST^DIC) calls have been enhanced to
provide capabilities available in the Fileman print module. These enhancements are of very significant
value to VISTA programmers who had to settle for less when using these modules. These
enhancements are:

• The return fields list (3rd argument for both the finder and lister) can now return computed
fields, including multiples and forward and backward relational jumps.

• The “E” flag (4th argument for both the finder and lister) will now cause all output to be
returned even if the data is invalid (especially with sets of codes and pointers fields).

• The new eighth parameter of the lister will be invoked if there is an “X” flag present (4th
argument). This parameter will invoke Fileman's print module sorter to allow you to sort your
data in any order the print module allows. For example:

◦ You can now sort by an un-indexed field.

◦ You can construct a filtering expression to just return certain records.

◦ You can sort by a previously defined SORT TEMPLATE

◦ You can sort by several fields (e.g. by Date of Birth, then by Name)

◦ You can sort by multiples rather than top-level fields.

• To help with the “X” flag, you can now create a SORT TEMPLATE silently using the call
BUILDNEW^DIBTED.

Several examples will be presented below. When using ZWRITE, apply your Mumps implementation

preferred format to get the desired output. Alternately, you can use $QUERY to inspect the returned
data. The ZWRITE format presented below is GT.M's.

Returning Computed fields as part of the third argument.
Here's an example using the finder. This example returns the name and abbreviation plus the count of
the counties for each state that begins with the letters “AL”. You will see that there are three entries that
match.

v22p2>D	 FIND^DIC(5,,"@;.01;1;COUNT(COUNTY)","","AL")

v22p2>ZWRITE	 ^TMP("DILIST",$J,*)

^TMP("DILIST",16294,0)="3^*^0^"

^TMP("DILIST",16294,0,"MAP")=".01^1^C4"

^TMP("DILIST",16294,2,1)=1

^TMP("DILIST",16294,2,2)=2

^TMP("DILIST",16294,2,3)=100

^TMP("DILIST",16294,"ID",1,.01)="ALABAMA"

^TMP("DILIST",16294,"ID",1,1)="AL"

^TMP("DILIST",16294,"ID",1,"C4",1)=67

^TMP("DILIST",16294,"ID",2,.01)="ALASKA"

^TMP("DILIST",16294,"ID",2,1)="AK"

^TMP("DILIST",16294,"ID",2,"C4",1)=29

^TMP("DILIST",16294,"ID",3,.01)="ALBERTA"

^TMP("DILIST",16294,"ID",3,1)="AB"

^TMP("DILIST",16294,"ID",3,"C4",1)=1

The following example gets you all providers associated with a Visit by using a backwards pointer
from the VISIT file to the V PROVIDER file via the V PROVIDER's “AD” cross-reference. We asked
the lister here to pack the output and only return 10 results. Notice the 3rd entry for the way multiple
results from the backward pointer are packed.

GTM>D	 LIST^DIC(9000010,,"@;.01;V	 PROVIDER:PROVIDER","P",10)

GTM>ZWRITE	 ^TMP("DILIST",*)

^TMP("DILIST",10057,0)="10^10^1^"

^TMP("DILIST",10057,0,"MAP")="IEN^.01^C3"

^TMP("DILIST",10057,1,0)="51^FEB	 6,2005^"

^TMP("DILIST",10057,2,0)="1^JUL	 1,2005@14:37:23^DOCTOR,THIRTEEN"

^TMP("DILIST",10057,3,0)="2^JUL	 1,2005@14:37:23^DOCTOR,TEST~DOCTOR,THIRTEEN"

^TMP("DILIST",10057,4,0)="144^JUL	 1,2005@14:37:23^"

^TMP("DILIST",10057,5,0)="9^JUL	 8,2005@13:03^DOCTOR,EIGHT"

^TMP("DILIST",10057,6,0)="14^JUL	 15,2005@16:00^DOCTOR,TEST"

^TMP("DILIST",10057,7,0)="3^JUL	 18,2005@17:57:49^COORDINATOR,SIX"

^TMP("DILIST",10057,8,0)="4^JUL	 19,2005@07:41:49^COORDINATOR,SIX"

^TMP("DILIST",10057,9,0)="5^JUL	 19,2005@07:45:55^COORDINATOR,SIX"

^TMP("DILIST",10057,10,0)="6^JUL	 19,2005@08:52:13^COORDINATOR,SIX"

“E” Flag
Most of the time, using the “E” flag will produce no difference than not using it. However, if you have
invalid data in Fileman (as in an invalid code in a set of code field), the “E” flag will cause the lister or
finder to continue returning all data, in spite of the error. Previously, and without the “E” flag, the
lister/finder will return a partial listing and therefore misleading the user on the actual entries.

To test this, set a Patient's Sex in file PATIENT (#2) to be “U” by forcing the value in. Use the lister to
grab the patients, and you will notice the number of patients returned is different with the “E” flag
versus without the “E”.

Print Module Integration with the Lister
The new eighth parameter of the lister will be invoked if there is an “X” flag present (4th argument).
This parameter will invoke Fileman's print module sorter to allow you to sort your data in any order the
print module allows.

A few brief examples (with no output presented) will show how this works:

Example 1
Caller no longer needs to know whether the field he wants to sort by has a cross-reference on it. If it
has an index, that index will be used. Otherwise the sort will be done on-the-fly. Here is how to sort
users (File 200) by LAST OPTION ACCESSED (Field 202.1):

D	 LIST^DIC(200,,.01,"X",,,,202.1)

Example 2
Boolean-valued Computed Expressions are very useful for FileMan sorts. They can simulate the
functionality of FileMan's "SEARCH" Option. Here is how to retrieve only DRUGs (File 50) with a
MESSAGE (Field 101) containing "HOME MED", and a GENERIC NAME field containing
"VITAMIN":

D	 LIST^DIC(50,,".01;101","XP",,,,"MESSAGE[""HOME	 MED""&(#.01[""VITAMIN"")")	

Examples 3 & 4
"INDEX" can also be the bracketed name of a SORT TEMPLATE. The Template can be of either type,
sort or search. The SORT algorithm, however, must not specify "asking the user" for "From" or "To"
fields. Here is how to retrieve the first nine LAB TEST values (File 60), sorted by the "LR TEST
DICTIONARY" Template:

D	 LIST^DIC(60,,.01,"XP",9,,,"[LR	 TEST	 DICTIONARY]")

Next, a sort module is created only the fly to return States whose name begin with “NEW” sorted in the
order of most number of counties.

	 N	 DMUST	 ;	 Holds	 Sort	 Template	 Text

	 S	 DMUST(1)="SORT	 BY:	 -‐COUNT(COUNTY)"	 ;	 Sort	 by	 the	 reverse	 of	 number	 of	 counties

	 S	 DMUST(2)="From:"

	 S	 DMUST(3)="To:"

	 S	 DMUST(4)="	 	 	 WITHIN	 COUNT(COUNTY),	 SORT	 BY:	 $E(NAME,1,3)=""NEW"""	 ;	 Only	 get	 the	
States	 whose	 names	 start	 with	 NEW

	 N	 RET	 ;	 RP	 style	 return	 reference	 variable

	 D	 BUILDNEW^DIBTED(.RET,5,$NA(DMUST),"DMU	 NEW	 STATES	 W	 MOST	 COUNTIES")

	 D	 LIST^DIC(5,,".01;COUNT(COUNTY)","X",,,,"[DMU	 NEW	 STATES	 W	 MOST	 COUNTIES]")

Example 5
The eighth parameter is in fact evaluated as the "BY" parameter of a call to EN1^DIP. Thus, it can
contain a string of "answers", separated by commas. Here is how to sort patients (File 2) by year of
birth, and within that alphabetically:

D	 LIST^DIC(2,,.01,"XP",,,,"YEAR(DOB),NAME")	

Example 6
The "BY" answers can navigate downward into multiples. Here is how to sort OPTIONS (File 19) by
the Menu Options they call:

D	 LIST^DIC(19,,.01,"XP",,,,"10,.01")

Silent Creation of Sort Templates
This is done using BUILDNEW^DIBTED. See example 4 of how that is used. Programmers should
note that the sort template creator is very exact on what it will accept as valid input. Programmers
should create the sort template by hand and then copy the generated array which can be obtained using
the EDIT TEMPLATE option under the UTILTIES menu. This array needs to include all the spaces as
specified in the original sort template.

Definition of Canonic Input, Sort or Print Templates
Fileman’s Template Edit option has been upgraded to allow a template to be defined as “canonic” for a
file, making it the file’s default template. Three canonic templates can be defined for each file, one for
each of the three main kinds of templates. Canonic templates improve the usability of files and Fileman
options by remembering a reasonable selection of fields and formatting for all three operations.

Applying a Field’s Output Transform to Totals and Subtotals
When totals and subtotals are generated from fields with defined output transforms, those same
transformations are now applied to the totals and subtotals. For example, if a numeric field’s output
transform inserts commas to make a long number more readable, those commas will now be inserted
into totals and subtotals derived from that field.

Computed From and To Values
When a user enters a computation as the From or To value of a sort field, Fileman now offers the option
of whether to run the calculation now and store the result s a fixed From/To value, or to save the
calculation and rerun it whenever the sort is performed in the future, allowing for more flexible sort
specifications.

Data Protection Enhancements
To better protect data from unintentional changes, the following changes have been introduced:

• Word Processing fields can now be made uneditable.

• Set Cross-references to be non-rerunnable

To make a word processing field uneditable, simply go to UTILITY FUNCTIONS > UNEDITABLE
DATA. This functionality behaves like the uneditable regular fields.

To set a cross-reference to be non-rerunnable, you need to either EDIT an old style non-regular cross-
reference (you won't get the prompt the first time you are creating the field) or CREATE or EDIT a
new style cross-reference (Regular and Mumps).

This is ^DIK's behavior for re-runnability:

• IXALL,IXALL2: Non-re-indexable not executed

• IX,IX1,IX2,EN,EN1,EN2: All executed.

• ENALL,ENALL2: Works properly when an index is specified; but doesn't execute old style
xrefs when index isn't specified.

Expanded data storage
Fileman can now store an arbitrary amount of data into a Global Node. Setting
^DD(“STIRNG_LIMIT”) to a number containing the limit of length of global nodes of your Mumps
database will allow you to store data with a combined length up to the limit. By default, if not set,
Fileman limits any globals to 256 characters, the limit set by the last adopted Mumps standard, M 95 .

This is an important enhancement to Fileman as many data sets today (such as RxNorm and SNOMED)
contain very long strings which are inappropriate for word processing fields. In addition, this makes
loading delimited data into Fileman very easy for a programmer. Consider the following (GT.M code;
use Cache equivalents to the Open, Use and Close commands on Cache or use ^%ZISH calls to open
and close files):

N	 F	 S	 F="rrf/RXNCONSO.RRF"	 O	 F:(readonly:rewind)	 U	 F

N	 I,X	 F	 I=1:1	 R	 X:0	 Q:$ZEOF	 	 S	 ^DMU(1009.811,I,0)=$TR(X,"|^","^|")

C	 F	 U	 $P

N	 DIK	 S	 DIK="^DMU(1009.811,"	 D	 IXALL^DIK

This code imports all of the public domain RxNorm Concepts into an existing empty Fileman file
stored in ^DMU(1009.811) and then indexes the data. The data is delimited using pipes (“|”) and may
contain a carets (“^”). The $TR switches the pipes and carets to make the data safe for Fileman.

Programmers should note that storing long nodes may render your data less portable. As a guideline, as
of the time of this writing, the following are the maximum lengths in Mumps Implementations the
author is familiar with:

• Intersystems Cache 2013: 32 kilobytes

• GT.M V6.0: 1 Megabyte

• Mumps V1 V1.60 (not supported by Fileman): 32 kilobytes

Standalone Fileman Installation
Version 22.2 restores the ability for Fileman to run without a VISTA Kernel. Details on installing a
Standalone Fileman instance can be found in the Install Guide.

Not all functions of Fileman work without a Kernel. For example, files cannot be imported or exported
to the underlying OS file system as this is handled by the Kernel %ZISH routine.

DIFROM Enhancements
In version 22.0, Fileman did not have the ability to transport its new first-class data integrity elements,
new style indexes and keys. While the code did actually reside in Fileman, Fileman couldn't use it
transport its files. This version adds support for transporting new style indexes and keys to Fileman.
Programmers do not have to do anything special to this to work; just use the routine ^DIFROM as
before.

Unit Tests
This version of Fileman provides some Unit Tests for Fileman functionality. All the Unit Tests are
located in the DMU namespace. You need all of routines for them to function. In addition, you need the
M Unit package.

Currently, the following Unit Tests entry points are supplied:

D ^DMUDT000 ; Check %DT functionality

D ^DMUDTC00 ; Check %DTC functionality

D ^DMUDIC00 ; Check improvements to FIND and LIST^DIC introduced in Fileman 22.2

Conclusion
This new version of Fileman brings several important changes that will address the needs of Medical
Data in the twenty-first century. These include:

• Expanded storage support for vocabularies with long indexable text entries

• Better support for internationalization and localization

• Better auditing support

Future efforts for Fileman will include support for extensible data types and better support for pseudo-
pointers. In the internationalization arena, we hope to add full support for UTF-8. Fileman by and large
support UTF-8, but it needs to be fully tested and certified.

	Introduction
	Installation Instructions
	Configuration
	Documentation
	Notable new features in Fileman 22.2
	Screenman enhancements
	Internationalization and Localization
	Improved Data Analysis Tools
	Dangling Pointer Reporter
	Find Pointers Into a File

	Verify Fields
	Data Dictionary Comparer
	Enhanced Auditing Capabilities
	Enhanced Database Server Finder and Lister calls
	Returning Computed fields as part of the third argument.
	“E” Flag
	Print Module Integration with the Lister
	Example 1
	Example 2
	Examples 3 & 4
	Example 5
	Example 6

	Silent Creation of Sort Templates
	Definition of Canonic Input, Sort or Print Templates
	Applying a Field’s Output Transform to Totals and Subtotals
	Computed From and To Values
	Data Protection Enhancements
	Expanded data storage
	Standalone Fileman Installation
	DIFROM Enhancements

	Unit Tests	
	Conclusion

