Delphi-Windows Digital Signature Library Interface

Joseph Snyder
SW Process Engineer
snyderj@osehra.org

Purpose

The purpose of these three files is to provide the interface between Delphi executables and the
built-in Windows security functions. The push to supplement the traditional sign-on with the usage of a
Personal Identity Verification (PIV) card is rapidly gaining momentum. One major focus of using these
PIV cards is to further secure the prescribing of controlled substances.

There are already existing versions of these interface files which are available to the public. One
version was released in the version 29 FOIA copy of the Computerized Patient Record System (CPRS) for
the VistA EHR. However, it was determined that the license for those files, which was the Mozilla Public
License, was incompatible with the license that the OSEHRA VistA uses for its repository. These files are
released with the Apache 2.0 license to match the license for the OSEHRA VistA repository. The files
contained here are written by blanking the three necessary files and filling in the function calls based
upon what was missing during compilation time and testing.

Code Walkthrough
The interface consists of three separate files:

e XIfMime.pas
o Woecrypt2.pas
e WinSCard.pas

Each file contains different functions corresponding to a different focus around acquiring and verifying
the security certificate of the card holder.

WinSCard.pas

WinSCard.pas contains the constant values and function signatures necessary to connect to a
Smart Card reader. Once a connection has been established to a local Smart Card reader, it is able to
access the information about the certificate contained on a supplied card. These functions are all found
in the Winscard.dll library.

Wcrypt2.pas

Once the user’s certificate has been accessed from the PIV or Smart Card, the next step is to
verify that the certificate is valid and corresponds to a trusted user. The functions found in Wcrypt2.pas
are to be used to open a certificate store and perform various checks to verify that the user has the

correct identity and permissions. The functions in this file are called from one of two Windows DLLs:
crypt32.dll or Advapi32.dll.

XIlfMime.pas

The functions found in the XIfMime.pas file are used to encode information for transmission
between two sites. This library encodes and decodes the information using a Base64/MIME encryption.
The Delphi environment has a built-in library to accomplish this, named EncdDecd, to encode both
strings and arbitrary streams of data

External Interfaces/Dependencies

The files in this submission were originally released with the CPRS code that corresponded to
version 29 of the software. CPRSv29 corresponds to the OR*30*306 patch for the Order Entry Results
Reporting package. If these files are placed into the source tree of an earlier version of CPRS, they
should not have an effect on the compilation. To fully utilize the files, it is recommended that they be
used to compile CPRSv29 or later.

The files were rewritten by building the CPRS v29 code in the Delphi 2007 compiler. It was also
tested with a different program using the Delphi XE3 compiler. Both of these compilation environments
were run on Windows 7 SP 1 machines. These two compilers both showed no issue in compiling the
submitted files. Itis recommended that a Delphi compiler which is Delphi 2007 or more recent is used
to compile the files.

The testing code was verified using the NIST Test Personal Identity Verification (PIV) card set.
More information about the NIST testing cards can be found here:

http://csrc.nist.gov/groups/SNS/piv/testcards.html

As mentioned above, the development and testing was done on two Windows 7 Service Pack 1
computers. Of the three Windows DLLs that are used, none are specific to Windows 7. Therefore, there
should be no dependence on the version of Windows environment necessary to build with these files.

The versions used in development and testing are:

e crypt32.dll

o 6.1.7601.18526
e Advapi32.dll

o 6.1.7600.16385
e Winscard.dll

o 6.1.7600.16385

The values were found with by utilizing the sigcheck tool and entering the path to the
C:\windows\System32 version of each file.

http://csrc.nist.gov/groups/SNS/piv/testcards.html
https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx

Installation

These files were created to replace files from the FOIA release of the CPRS executable, so there
is already a designed path to include these files. Please be aware that these variables and options will
only be shown on a system with the proper Delphi environment.

To use these files with the OSEHRA VistA repository to build the CPRS executable, one would
only need to set the “BUILD_DELPHI_XuDigSig_DIR” variable in the CMake GUI to the path to a directory
with these files. An example is found in the image below:

Mame Value

This information would then be propagated to the Delphi project file upon running the CMake
configure and generate steps.

These files are obviously not limited to just the CPRS application. To install the files into any
other Delphi project, one would follow the standard method of including the files via the ‘uses’ directive.
The files should be placed into a directory and added to a ‘uses’ subheading in the Delphi project file
(*.dpr). Again, a small code snippet example follows:

Uses

ShareMem,

Forms,

winHelpviewer,

ORSystem,

wcrypt2 in 'C:/Users/joe.snyder/work/OSEHRA/CPRSv29-
XUDigSig\wcrypt2.pas',

winsCard in 'C:/Users/joe.snyder/Work/OSEHRA/CPRSV29-
XUDigSig\winsCard.pas',

X1fMime in 'C:/Users/joe.snyder/work/OSEHRA/CPRSV29-
XUDigsig\X1fMime.pas"',
<snip>

How to Test

There are DUnit tests written for the three files which included in this download:

o UTXIfMime.pas
e UTWcrypt2.pas
e UTWinSCard.pas

Note about testing:

One of the Wcrypt2 tests has multiple pass conditions based upon the return of the function being
tested. The TestCertVerifyRevocation function has two passing conditions:
e the CertVerifyRevocation function returns true and has no error expressed
e The CertVerifyRevocation function returns false and the dwError value is set to ‘2148081683’.
e This corresponds to a CRYPT_E_REVOCATION_OFFLINE error as expected.
If the dwError value is any other value, the test will fail. Due to the absence of a revocation server in the
testing environment, there is no dashboard result with the test returning true with no errors.

It was found that when the self-signed certificate from the NIST was imported into the “Trusted Root
Certificate Authority” category, the VerifyRevocation error was no longer being expressed. The self-
signed certificate can be found at the NIST information website and can be imported into the “Trusted

Root Certificate Authority” via the Certificate Manager utility. This is found by searching and running for
the “certmgr.msc” program from the Windows’ start menu.

File Action View Help
e 2@ 0lc=HE
i Certificates - Current User Object Type

| Personal
| Trusted Root Certification Au
| Enterprise Trust

.] Intermediate Certification Au

| Certificates

: || Active Directory User Object
. [| Trusted Publishers

. [] Untrusted Certificates

> || Third-Party Root Certificatior
2 || Trusted Pecple

Once there, right click on the “Trusted Root Certification Authority” and select the “import” option
under the “All Tasks” menu.

File Action
ol A2 53
_ﬂ]] Certificates - Current User Object Type
:—_ Personal | Certificates
- Trusted. Roo Find Certificates...
_| Enterprise Tr
| Intermediate All Tasks 2 Find Certificates...
| Active Direct
| Trusted Pub View ’ Ibapen
el Un_trusted C Refresh
_| Third-Party .
| Trusted Peo Sl
'_. Other Peopl Help
| CAI

| Certificate Enrollment Reque:

| Smart Card Trusted Roots

http://csrc.nist.gov/groups/SNS/piv/testcards.html

Setup Prior to Testing

The usage of the smart card requires some set up on the Windows environment. There are two services
that are required in order to access the smart card and the certificates contained within. To ensure the
services are started, Search for and run the “services.msc” functionality from the Windows start menu.

Once the Services window appears, ensure that the “Smart Card” and “Cryptographic Service” entries
both have the “Started’ status.

File Action View Help
ol d

7}, Services (Local)

Bzl muw

" Senvices (Local)

)

Cryptographic Services Name Description Status StartupType Log On As -

Sonth . i Application Layer ... Provides su... Manual Local Service

Stop the service 7

e % Application Mana... Processes in... Manual Local Syste...
7 ASP.NET State Ser.. Provides su... Manual Netwerk S... A
< Background Intelli... Transfersfil.. Started Automatic (D... Lecal Syste... 3

EES('TU?N Z Base Filtering Engi... TheBaseFil.. Sterted Automatic Local Senvice

rovides four management senvices: . g o er Drive En... BDESVC hos... Manusl Local Syste...

Catalog Database Service, which

confirms the signatures of Windows 5 BlackfishSQL CodeGear B... Started Autormnatic Local Syste...

files and allows new programsto be . Block Level Backu.. The WBENG... Manual Local Syste...

installed; Protected Root Service, Bluetooth Support... The Bluetoo... Manual Local Senvice

which adds and removes Trusted 2

Root Certification Authority + BranchCache This service ... Manual Network 5...

certificates from this computer; 54 Caché Controller f... Started Automatic Local Syste...

Automatic Root Certificate Update 4, Certificate Propag... Copies user.. Stated Automatic Local Syste...

Service, which retrieves root #

certificates from Windows Update ,y CNG Key Isolation The CNG ke... Started Manual Local Syste...

and enable scenarios such a5 S5 and i COM EventSyst.. SupportsSy.. Stated Automabic Local Semvice

Key Service, which helps enrall this - COM+ System Ap... Manages th... Manual Local Syste...

computer for certificates. If this Z: Computer Browser Maintains a... Manual Local Syste...

senvice s stopped, these £ Credential Manager Provides se, Manual

management services will not

function properly. If this service is " Started

disabled, any services that explicitly 5 DCOM Server Pro.. The DCOM.. Started Autormnatic Local Syste...

depend on it will fail to start. % Dell System Mana... Asupports.. Stated Automatic Local Syste...
+ Desktop Window ... ProvidesDe.. Started Automatic Local Syste...
£ DHCP Client Registersan... Started Automatic Local Service
7 Diagnostic Policy .. TheDiagno.. Sterted Automnatic Local Service
% Diagnostic Service.. TheDiagno.. Started Manual Local Service
% Diagnostic System... The Diagno... Manual Local Syste...
% Disk Defragmenter Provides Dis... Manual Local Syste...
+ Distributed Link Tr... Maintainsli.. Started Automatic Local Syste...

£ Distributed Transa... Coordinates...

Manual Network S...

\Extended /(Standavd

Cryptographic Service

File Action View Help
@ |FE o= HmE > o n®
£, Senvices (Local) {[72 Seyices (Local)
Smart Card Name Description Status Startup Type LegOnAs m
% Remote Access C.. Manages di.. Manuzl Local Syste..
Stap the senvice % Remote Desktop .. RemoteDes.. Stated Manual Local Syste...
Restart the service
+ Remote Desktop 5. Allows user.. Started Manual Network S...
+;Remote Desktop 5. Allowsther.. Started Manual Local Syste...
Description: “Remote Procedur.. TheRPCSS.. Started Automatic Network 5.,
Z"y“’;fiﬁ;jif“ﬁ’;‘i’z:;’::T:’d Remote Procedur..In Windows... Manus! NetworkS...
stopped, this computer will be unable Remote Registry Enables rem.., Manual Local Service
to read smart cards, If this service is #Reuting and Rem... Offers routi... Disabled Local Syste...
disabled, any services that explicitly 7 pC Endpoint Ma.. ResolvesRP.. Stated Automatic NetworkS..
depend on it will fail to start.
% Secondary Logon Enables star... Manusl Local Syste...
+ Secure Socket Tun... Provides su... Manual Local Service
% SecureStorageServ... Wave Secur... Manual Local Syste...
% Security Accounts.. Thestartup.. Stated Automatic Local Syste...
+ Security Center The WSCSV... Started Automatic (D... Local Service
& Server Supportsfil.. Started Autematic Local Syste...
+ Shell Hardware De... Provides nc... Started Automatic Local Syste...
#1Smart Card Manages ac... Stated Automatic Local Service
« Smart Card Remo.. Allows the 5. Manual Local Syste.., E
4 SNMP Trap Receives tra... Manual Lecal Service
+ Software Protection Enables the ... Automatic (D... Network S...
+, SPP Notification 5... Provides So... Manual Local Service
+ SQL Server VSS Wr... Providesth.. Started Automatic Local Syste...
+ SSDP Discovery Discoversn... Started Manual Lecal Service
% Superfetch Msintains a.. Stated Automatic Local Syste...
’, System Event Noti.. Monitorssy... Stated Automatic Local Syste...
+; Tablet PCInput Se... Enables Tab... Manual Local Syste...
+ Task Scheduler Enables a us... Started Automatic Local Syste...
4 TCP/IP MetBIOS H... Providessu.. Started Automatic Local Service J
 Edtended /{ Standard

Smart Card Service

Integration of Testing

OSEHRA VistA Repository

These files, much like the source files, have a place in the OSEHRA VistA repository. To test the
files with the CPRS build process, place the files into the Packages\Order Entry Results
Reporting\CPRS\Testing\Tests directory. Then, you would add an entry for each file under the
‘uses’ header to the CPRSTesting.dpr.in:

uses

UTX1fMime in '@SOURCE@\Tests\UTXT1fMime.pas' {UTXuDsigs},

UTWcrypt2 in '@SOURCE@\Tests\UTwcrypt2.pas' {UTXuDsigS},
UTwinSCard in '@SOURCE@\Tests\UTwinSCard.pas'{UTXuDsigS};

After running a Configure, Generate, and make, you can execute all of the tests at once by running the
executable or by using the CTest program.

Running ‘ctest -n’ will show the available tests

C:\Users\joe.snyder\Work\OSEHRA\VistA-delphi-dev>ctest -N
Test project C:/Users/joe.snyder/wWork/OSEHRA/VistA-delphi-dev
Test #1: DUnituTSignonCnf
Test #2: DUnitUTwcrypt2
Test #3: DUnitUTwinSCard
Test #4: DUnituUTX1fMime

Total Tests: 4

Then, the tests can be run together by executing ‘ctest’ or individually with a command like “ctest -
R Wcrypt2”. The tests run will be determined by matching the test names against the string after the
“-R”. Upon running the tests, all of the tests should pass. The output printed to the screen should look
like this:

C:\Users\joe.snyder\Work\OSEHRA\VistA-delphi-dev>ctest
Test project C:/Users/joe.snyder/work/OSEHRA/VistA-delphi-dev
Start 1: DUnituUTSignonCnf

1/4 Test #1: DUnitUTSignonCnf Passed 0.05 sec
Start 2: DUnitUTWcrypt2

2/4 Test #2: DUNTtUTWCrypt2cviiinnnnnnn. Passed 25.21 sec
Start 3: DUnitUTwinSCard

3/4 Test #3: DUnitUTWinSCardcvvvvuvnrnnn Passed 0.20 sec
Start 4: DUnituTX1fMime

4/4 Test #4: DUNTtUTXTfMImecvvivrinnnnnnn Passed 0.05 sec

100% tests passed, 0 tests failed out of 4

Total Test time (real) = 25.69 sec

Be aware that running the tests will ask for a smart card to be
inserted and accessed.

An earlier attempt of the integration of the testing code can be found in the OSEHRA Gerrit instance:
http://review.code.osehra.org/#/c/633/ .

External project

For testing with DUnit without using the OSEHRA VistA repository, the files can be included into any
existing DUnit testing setup. If one does not exist, the OSEHRA version is a good example to see how to
generate a separate testing executable to run. The Delphi project directory which generates the
OSEHRA testing can be found in the Packages/Order Entry Results
Reporting/CPRS/Testing directory.

Coverage Calculations

The testing of the code reports that 95% of the executable code is covered by the three test files. The
coverage was calculated using the Delphi Code Coverage tool with the OSEHRA VistA testing setup. The
coverage is calculated over the testing executable that is generated instead of the CPRS executable.

The command used to generate the necessary HTML files for CTest to parse is:

VistA-delphi-dev$ ~/Downloads/CodeCoverage_win32_1.0_RC9/CodeCoverage.exe -e
~/Work/OSEHRA/VistA-delphi-dev/CPRS/Testing/Bin/Debug/CPRSTesting.exe -html -u X1fMime
winsCard wcrypt2 -sp ~/Work/OSEHRA/CPRSv29-XUDigSig/

An explanation of the flags for the function is below:
e -e
o Path to the executable to run
e -html
o Output the results of the coverage as HTML files

http://review.code.osehra.org/#/c/633/
https://code.google.com/p/delphi-code-coverage/

o Names of the units to calculate coverage for
e -sp
o Directory where the source for the targeted units can be found

The generated HTML will report 100% coverage due to the fact that it can calculate which lines where
hit, but not the total of executable lines. To demonstrate the correct calculation, run the Coverage
capability of a CMake whose version is later than 3.0.2 in the same directory that contains the output
HTML of the previous step. An example run follows:

VistA-delphi-dev$ ~/work/cmake-build/bin/Debug/ctest.exe -M Experimental -T Coverage
Site: TUCHANKA
Build name: win32-

pPerforming coverage

Accumulating results (each . represents one file):

Covered LOC: 84
Not covered LOC: 4
Total LOC: 88

Percentage Coverage: 95.45%

Future Work

The future of these three files does have a clear path for additional development. The files do
not contain the signatures for every possible Windows function. As a new functionality is developed for
these Delphi libraries, calls to other Windows functions will become necessary. These functions and any
necessary data structures will be included as needed.

