

Patient-Centered Management Module Redesign
(PCMMR)

Document Version 1.9

System Design Document

June, 2014

PCMMR
System Design Document February 2014

Revision History
Date Version Description Author

12/16/2011 0.2 Initial draft (Information tranfered from
SAD)

2/27/2012 0.3 Updates

2/29/2012 0.4 Technical Edit

4/2/2012 0.5 Updates

4/6/2012 0.6 Technical Edit

6/4/2012 0.7 Updates

6/4/2012 0.8 Technical Edit

6/15/2012 0.9 Updates

6/18/12 0.95 Technical Edit

7/9/12 1.0 Incremented document version to 1.0 and
added signature page

7/30/12 1.1 Incorporated feedback from VA

11/13/12 1.2 Added MVI interface details

1/3/13 1.3 Updated with feedback from MVI

1/8/13 1.4 Technical Edit

1/21/14 1.5 Content Revisions

2/19/14 1.6 Merged with Init7_PCMMR_SDD.docx

4/14/14 1.7 Updates for MVI section

6/11/14 1.8 Updates

6/12/14 1.9 Updates

PCMMR
System Design Document February 2014

Table of Contents
1. Introduction .. 1

1.1. Purpose of this document ... 1
1.2. Identification .. 2
1.3. Scope .. 2
1.4. Relationship to Other Plans .. 2
1.5. Methodology, Tools, and Techniques .. 2
1.6. Policies, Directives, and Procedures ... 4
1.7. Constraints ... 4

1.7.1. TRM ... 5
1.7.2. Release Architecture ... 5

1.8. Design Trade-offs .. 6
1.9. User Characteristics .. 7

1.9.1. User Problem Statement ... 7
1.9.2. User Objectives .. 7

2. Background .. 7
2.1. Overview of the System .. 8
2.2. Overview of the Business Process .. 10
2.3. Business Benefits .. 18
2.4. Assumptions and Constraints .. 19

2.4.1. Design Assumptions ... 19
2.4.2. Design Constraints .. 19

2.5. Overview of the Significant Requirements .. 20
2.5.1. Overview of Significant Functional Requirements 20
2.5.2. Functional Workload and Functional Performance Requirements ... 21
2.5.3. Operational Requirements .. 23
2.5.4. Overview of the Technical Requirements .. 23
2.5.5. Overview of the Security or Privacy Requirements 27
2.5.6. System Criticality and High Availability Requirements 28

2.6. Legacy System Retirement ... 28

3. Conceptual Design... 29
3.1. Conceptual Application Design .. 29

3.1.1. Application Context ... 29
3.1.2. High Level Application Design ... 31
3.1.3. Application Locations ... 33
3.1.4. Application Users .. 33

3.2. Conceptual Data Design .. 34
3.2.1. Project Conceptual Data Model .. 34

PCMMR
System Design Document February 2014

3.2.2. Database Information .. 34
3.3. CISS Infrastructureincluding OHRS and PCMMR partner applications 35

3.3.1. System Criticality and High Availability ... 37
3.3.2. Special Technology ... 38
3.3.3. Technology Locations ... 38
3.3.4. Conceptual Infrastructure Diagram .. 40

4. System Architecture .. 40
4.1. Hardware Architecture .. 40
4.2. Software Architecture .. 41

4.2.1. CISS .. 41
4.2.2. Partner Applications .. 41
4.2.3. Code Framework .. 41

4.3. Software Architecture – PCMMR .. 41
4.3.1. CISS Compared and Contrasted .. 42
4.3.2. Standard Partner-System Implementation .. 42
4.3.3. AJAX ... 45

4.4. Communications Architecture .. 45

5. Data Design .. 46
5.1. Database Management System Files ... 47

5.1.1. JPA mapping example ... 49

6. Detailed Design .. 51
6.1. Software Detailed Design .. 51

6.1.1. Module “CRUD editors” .. 51
6.1.1.1. Processing ... 52
6.1.2. Module “Search Screens” ... 53
6.1.2.1. Processing ... 54
6.1.3. Module “AJAX methods & Dialogs” ... 55
6.1.3.1. Processing ... 56
6.1.4. Reporting .. 57

6.2. Batch Processes .. 57
6.2.1. Transfer Patients to Entire Team .. 57
6.2.2. Patient Bulk Operations .. 58
6.2.3. Patient Auto-Inactivation Error! Bookmark not defined.
6.2.4. Cluster Considerations ... 58

6.3. Scheduled Jobs ... 59
6.3.1. MVIPatientInboundProcessorJob... 59
6.3.2. MVIPrimaryViewAndRegistrationScheduledJob 59
6.3.3. PatientAutoInactivationScheduledJob Error! Bookmark not defined.
6.3.4. PurgeCompletedReportsJob Error! Bookmark not defined.

PCMMR
System Design Document February 2014

6.3.5. PurgeJobExecutionResultsJob .. 59
6.3.6. TeamValidationJob .. 59
6.3.7. VistaCleanupJob .. 60

6.4. Performance Enhancements .. 65
6.4.1. Hibernate level 2 cache - ehcache .. 65
6.4.2. JPA batch ... 65
6.4.3. JPA fetch & QueryCustomization ... 66
6.4.4. DB indexes ... 66
6.4.5. Multiple unattended servers ... 66
6.4.6. Distributed queues Error! Bookmark not defined.
6.4.7. Spring @Async / TaskExecutors .. 66

7. External Interface Design .. 67
7.1. Interface Architecture .. 67
7.2. Interface Detailed Design .. 67

7.2.1. Vista .. 68
7.2.2. MVI .. 68
7.2.3. CPRS ... 71

8. Human-Machine Interface ... 72
8.1. Interface Design Rules .. 72
8.2. Inputs .. 72
8.3. Outputs ... 75
8.4. Navigation Hierarchy ... 79

8.4.1. “Profile” example screen .. 80
8.4.2. “List” example screen ... 82
8.4.3. “Alerts” functionality ... 83
8.4.4. “Context-Sensitive Help” functionality .. 85

9. System Integrity Controls ... 85

10. Appendix A ... 86
10.1. Requirements Traceability Matrix... 86
10.2. Packaging and Installation .. 86
10.3. MVI use case “Manage a Patient Panel Request” requirements 86
10.4. Design Metrics ... 88
10.5. Glossary of Terms ... Error! Bookmark not defined.
10.6. Required Technical Documents ... 88

Attachment A - Approval Signatures ... 90

PCMMR
System Design Document 1 February 2014

1. Introduction
The mission of the Department of Veterans Affairs (VA), Office of Information and Technology (OIT),
Veteran Heath Administration (VHA) is to provide benefits and services to veterans of the United States.
In meeting these goals, OIT strives to provide high-quality, effective, and efficient Information
Technology (IT) services to those responsible for providing care to the Veterans at the point-of-care as
well as throughout all the points of the Veterans’ health care in an effective, timely, and compassionate
manner. The VA depends on Information Management/Information Technology (IM/IT) systems to meet
mission goals.

Over time, the VHA has developed a Primary Care (PC) system that balances productivity with quality,
access, and patient service. Management of patient panels in PC through mandatory and consistent use of
the Primary Care Management Module (PCMM) has supported this system redesign. In a PC setting and
in the Patient-Aligned Care Team (PACT) model, patients are assigned a Primary Care Provider (PCP)
who is responsible for delivering essential health care, coordinating all health care services, and serving
as the point of access for VA care. The PCP works together with a team of professionals which includes
nurses, pharmacists, social workers, health care professions trainees, clerks, etc.

The PCMM software is considered to be an important component in measuring patient demand and PCP
capacity to meet that demand, as well as reducing wait times. It allows users to set up and define
treatment teams, assign positions to the team, assign staff to positions, assign patients to the team, and
assign patients to a PCP. PCMM was developed to assist VA facilities in implementing PC. PCMM
supports both PC and non-PC teams. Teams are groups of staff members organized for a certain purpose.

In order to fully support a team-based, patient-centric approach to healthcare delivery, enhancements to
the current PCMM functionality are being requested that will allow a team to be formed and aligned
around a patient, including providers across multiple VA sites and in non-VA settings to enable care
coordination and communication. The software must also support automated data collection for
management metrics and analysis related to access, workload, and panel management. This functionality
would be ideally integrated into the future Clinical Practice Environment (CPE) versus being a separate
and distinct module or application. VHA’s model of team-based care is known as the PACT. The goal is
to evolve or replace existing PCMM software application with functionality that identifies all team
members and specialists (VA and non-VA) involved in the care of the patient, as well as their contact
information and provide modalities to facilitate provider-to-provider communication.

When PCMM data is entered in a standardized manner, it can be used to analyze the system and PACT
workload nationally by Veterans Integrated Service Network (VISN), and by a facility and its substations,
as well as at the team level. PACTs manage the overall care provided to a majority of VA health care
systems and their workload capacity is an important factor in determining the total number of patients that
can be cared for in the system. In response to the growing number of Veterans wanting to use VA health
care services, there is a need to quantify the PC capacity that is available so that demand and supply can
be better aligned. PCMM allows users to set up and define a healthcare team, assign staff and health
professions trainees to positions within the team, assign patients to the team, and assign patients to
practitioners, including trainees. Data regarding PCMM team setup and assignments is used to calculate
recommended panel size for PC teams and providers. The PCP and PC team information captured in
PCMM is transmitted and stored at the Austin Corporate Franchise Datacenter (CFD), is available in the
Corporate Data Warehouse (CDW), and is used for national reporting and performance measurement.

1.1. Purpose of this document
The purpose of this document is to describe in sufficient detail how the proposed system is to be
constructed. The System Design Document translates the Requirement Specifications into a document

PCMMR
System Design Document 2 February 2014

from which the developers can create the actual system. It identifies the top-level system architecture and
identifies hardware, software, communication, and interface components.

1.2. Identification
Senior management within the Veterans Health Administration (VHA) and the Veterans Programs
Portfolio has embraced two major principles – software methodology improvement and infrastructure
modernization. The PCMM Rehost and Regineering (“PCMMR”) project is an ideal example of
incorporating both modern development processes, such as SCRUM-flavored Agile, and up-to-date tools
and infrastructure, such as J2EE, Portal/Portlet functionality, Web 2.0, and a single enterprise database,
into the redesign of the legacy client-server PCMM application.

1.3. Scope

Table 1 Scope Inclusions
Includes
High-level architectural components of PCMMR

External system interfacing to/from PCMMR

Basic PCMMR design ideology

CISS portal overview

Table 2 Scope Exclusion
Excludes
Detailed data transmission protocols with external PCMMR systems

Detailed descriptions or analyses of external tools used in the development of PCMMR (see
Background section 1.51.5 for examples)

1.4. Relationship to Other Plans
This document does not define functional requirements, the detailed Configuration Management plan, or
the Software Quality Assurance Plan. Those will be described in other documents. The related RSD
is PCMMR_RSD.doc (version 1.29 as of 2/19/2014).

1.5. Methodology, Tools, and Techniques
As mentioned in the introduction, the software development lifecycle (SDLC) used by the PCMMR team
is the SCRUM version of Agile. This methodology breaks down the iterations of development into short
sprints, which allow for fast adaptation to changing requirements and constant feedback and refinement to
requirements from the business customer. Typical sprint activities are outlined in the following diagram:

PCMMR
System Design Document 3 February 2014

To support its Agile SCRUM-based
development methodology, the PCMMR team
has decided to use VersionOne to support its
planning, task management and scrum
monitoring tasks. VersionOne is the leading
project management tool designed specifically
for agile software
development.

In day-to-day development activities,
VersionOne tracks development test and
analysis activities and monitors “burn-down”,
the term used to describe the comparison of the
expected progress within an iteration against the
actual progress by the team. An example burn-
down chart used by the team during the daily
scrum meeting looks like:

Comparisons between sprints are also valuable
to estimate the overall workload assumed by the
team and ensure it’s not substantially higher or
lower than what is reasonable. The team
“velocity” is used to describe the average
number of story points completed by the team
from sprint to sprint. An example of the team
velocity chart looks like:

PCMMR
System Design Document 4 February 2014

1.6. Policies, Directives, and Procedures
This document, in conjunction with many others, has the additional purpose of satisfying the Veterans
Administration Program Management Accountability System (PMAS) requirements. Only after these
comprehensive requirements are met will the PCMMR VA customer allow the software production to be
declared “active,” meet certain milestones, and eventually be deployed to one or more production
environments.

In addition to PMAS procedures and deliverables, there are several more directives followed by PCMMR:

• Handbook 6500 describing VA information security standards

o VA directive 6513 “Secure External Connections” doesn’t apply since PCMMR doesn’t
access any systems external to the VA network and all PCMMR users must first be on the
network to access the application (either directly or over VA VPN).

• KAAJEE Security for Authentication and Authorization - The VA mandates implementing J2EE
application security through the use of the KAAJEE framework. This constraint will be taken into
account when designing the technical solution.

• IAM compliance – PCMMR follows the technical and business standards published by the
Identity and Access Management (IAM) group, to ensure that its user data remains protected and
is consistent with the enterprise. Specifically PCMMR uses the following services:

o Master Veteran Index (MVI) – serves as an authoritative source for persons’ identity
traits. Provides initial VA identity correlation with external partners and across VistA
sites, and maintains a record locator service for all client records known in VA.

o Identity Integration – Ensures application integration and consumption of identity
services is configured to ensure identity data remains current and accurate.

o VAAFI – PCMMR access to MVI is secured via the VAAFI security tool

For more information, refer to

• Java Coding Standards v2.0 -
 v

• Section 508 Checklist for Web-based Internet Information and Applications -
 http://www.ehealth.va.gov/508/terms/web 508 checklist.doc

1.7. Constraints
Business needs one, two, and eight of the PCMMR PWS must be satisfied to meet the initial prototype
(POC) contractual requirements. Additional business needs will be satisfied and system functionality built
during future development, such as the Initial Operating Capability at the one-year mark (IOC) and a
future potential Option Year One (OY1).

The system must be a central large-scale enterprise deployment which consolidates many separate and
disparate VistA data sources within the existing VA infrastructure. This consolidation effort will provide
a more standardized, uniform interface to VA users as well as give them the capability of reporting on
regional and national levels.

The system will be built using Java Enterprise Edition (JEE) components, portal/portlet code frameworks
and UI tools to recreate and enhance the legacy PCMM application in a web-based format.

PCMMR
System Design Document 5 February 2014

1.7.1. TRM
 These tools are compatible with the VA Technical Reference Model (TRM) located
at TRMHomePage.asp :

Application Server WebLogic Portal Server 10.3.6 Approved

Database Server Microsoft SQL Server 2008 R2
SP1

Approved

Database Driver Microsoft SQL Server JDBC
Driver

Approved

SQL Admin tool Toad Approved

Java Runtime Java 1.7 Approved

Middleware Spring Framework 4 Approved

ORM Hibernate 4 / JPA Approved

GUI Javascript Approved

HL7 Interface Engine Mirth Connect Approved

1.7.2. Release Architecture
The PCMMR production environment is compatible with the VA Release Architecture v1.21:

Operating System Red Hat Enterprise Linux 5.8 Current

Platform VMWare vSphere 5.2 virtual
host

Current

System Availability: High
Availability

vSphere Host Replication in both
the PROD and DR sites; SQL
Server database replication
between DB hosts

Current

System Availability: Disaster
Recovery

Identical standby disaster
recovery environment located at
Hines data center for the entire
CISS portal and all portlet
applications, including PCMMR

Current

System Availability: Scalability PCMMR is designed as a
clustered remote portlet, whose
capacity can be extended by
adding more instances of the
application to the cluster

Current

PCMMR
System Design Document 6 February 2014

Storage Technologies: Storage
Design

OS uses RAID storage subsystem
which meets the storage
standards listed. Database is on a
Storage Area Network with de-
duplication

Current

Storage Technologies:
Backup/Restore data

SAN-level backups Current

Network: Local Area Network Cisco hardware with remote
management and a capacity
exceeding PCMMR data
requirements

Current

Network: Wide Area Network Cisco hardware with remote
management and a capacity
exceeding PCMMR data
requirements

Current

Client: Desktop/Laptop Standard
Configuration

Standard Government-Furnished
Equipment (GFE) builds
(bundled with Internet Explorer)
are compatible with PCMMR
web application

Current

Client: Application Virtualization N/A PCMMR is accessed via web
browser, not over a remote
desktop or virtualized
environment

Database Products Microsoft SQL Server 2012 Current

1.8. Design Trade-offs
The existing legacy PCMM application is a client-side native application running within Microsoft
Windows. By converting this functionality to a browser-based format, the user interface may not be as
responsive across page refreshes as was, for example, clicking several tabs and buttons to navigate
between teams or positions in the old system. However, the browser-based approach aims to provide a
cleaner, less cluttered GUI for the end-user. Also, it is accessible on any platform, across many web
browsers, and without needing to install any client-side software.

Data from PCMMR is made accessible to external systems for reference. Ideally, all systems would
request data from the enterprise PCMMR application and be returned immediate results with up-to-date
data. Unfortunately, some of these systems (e.g. CPRS) need to access this data at a fast enough rate that
the enterprise installation would be overloaded and unable to meet the demand. The PCMMR team will
accommodate these dependent systems by using cached copies of the data (local to each VistA site), and
update those caches at a reasonable rate. The patient data synchronized to VistA is dependent on which
patients actually exist in that VistA site, which is determined authoritatively by the MVI.

PCMMR
System Design Document 7 February 2014

1.9. User Characteristics
The user community for both the legacy PCMM and web-based PCMMR systems consists of users who
assume a variety of roles. These roles include, but are not limited to, national administrators,
administrative associates, coordinators, configuration managers, facility and VISN coordinators, traveling
veteran coordinators, and the associated backups for these roles.

 It is expected PCMMR users will need specific training for the new system design and features.

1.9.1. User Problem Statement
As described in the introduction, the PCMMR software is an important component in measuring patient
demand and PCP capacity to meet that demand, as well as reduce wait times. The legacy PCMM system
is site-centric and limited in its capability to serve the patient. For example, if a patient spends six months
each year in one location and six months in another (a “snow bird”), they may receive care at two
different VA facilities. Each site currently has a separate installation of PCMM containing different team
definitions, providers, etc. Coordination of the patient between these two facilities, as well as reporting of
FTEE allocations and workload on the teams, is a manual process performed by PCMM users and is
hampered by the inability to synchronize the different data sets. The legacy PCMM system doesn’t
provide up-to-the-minute regional or national reporting of a patient’s assignment to teams, but instead
relies on reports provided by downstream systems (e.g. the CDW), which may be delayed a few days or
more. The idea of redesigning the application to become more “patient-centric” means that regardless of
where the patient goes, a consistent set of data and medical history is available to PCMM users at all VA
sites.

In addition to the mismatch between current functionality and the VA’s PACT requirements, other
specific problems have been identified. The legacy PCMM data model is very complex to query, and
allows for inconsistencies between teams and positions over time. To address these inconsistencies,
PCMM users have resorted to “workarounds”, such as using free-text naming conventions for the teams
and positions to track what really should be a consistent terminology lookup item in the database.
Because different sites use different naming conventions, additional manual synchronization and
resolution work has to be performed by PCMM users any time a patient needs to be tracked across sites.

1.9.2. User Objectives
Modernization of the PCMM software is needed to create a patient-centric model, which will give
PCMMR users the ability to provide consistent care and reporting against the data sets managed by
PCMMR.

2. Background
In order to fully support a team-based, patient-centric approach to health care delivery, enhancements to
PCMM are being requested that will allow a team to be formed and aligned around a patient, including
providers across multiple VA sites and in non-VA settings to enable care coordination and
communication. The software must also support automated data collection for management metrics and
analysis related to access, workload, and panel management. This functionality would be ideally
integrated into the future Clinical Practice Environment (CPE) versus being a separate and distinct
module or application. VHA’s model of team-based care is known as the PACT. The goal is to evolve or
replace existing PCMM software with a PACT functionality that identifies all team members and
specialists (VA and non-VA) involved in the care of the patient, as well as their contact information and
provide modalities to facilitate provider-provider communication.

According to the PCMM Modification Workgroup, the relationship between the patient and his or her
PCP can help to enhance patient care and the treatment process. Patients who regularly visit the same PCP

PCMMR
System Design Document 8 February 2014

receive better health care and use fewer health care resources because of the primary provider’s ability to
treat patients more efficiently and effectively. This request is in support of the Major Initiative, “Design a
Veteran-Centric Healthcare Model”, which seeks to provide software that identifies and aligns the entire
care team around the patient, including providers across multiple VA sites and in non-VA settings to
enable care coordination and communication.

The re-hosted version of the Primary Care Management Module will be called the Patient-Centered
Management Module. The upgrades to the PCMM system will allow users to efficiently edit team, group,
panel, and position information, while also ensuring that patients are appropriately assigned based on
required level of care.

Change control: The PCMMR contract allows the team to utilize it’s own development environment.
The team utilizes an open source tool for their code change control management which enables the
distributed software development teams to efficiently version and share source code. The open source tool
contains features like atomic change commits, a single version for each tree revision (as opposed to per-
file) and solid integration into both Windows and the Eclipse IDE.

Bug & requirement tracking: Issue management (i.e. bug tracking) for PCMMR will be managed by
using a defect management tool which provides the complete scope of requirements and issue tracking as
needed by the PCMMR HP development team and will also manage issues reported by users during the
PCMMR User Acceptance Testing periods.

From the website: “Available in both a starter and enterprise edition, HP Quality Center software is a
scalable, unified platform for managing and automating the delivery of secure, reliable, quality
applications. HP Quality Center software enables you to implement a complete quality management
infrastructure, establish consistent, repeatable processes and best practices for managing requirements,
tests, and business components.”

2.1. Overview of the System
The purpose of PCMMR (both the existing legacy application and the redesign) is to manage the
definition of teams of health care providers and the association of those teams to patients within the VA.
PCMMR provides a user interface which allows authorized administrators to create teams, search for and
add/remove providers to those teams, add patients to teams and provide a consistent snapshot of a
patient’s allocared set of team members over time, in alignment to the greater VA’s desire for “Patient-
Aligned Care Teams” (PACT). The purpose for the PCMM redesign is to migrate away from a large
number of separate site-specific installations of PCMM and into a single national installation, which
provides more constent reporting of the patient across sites. The redesign also is a reengineering effort,
migrating away from a “roll-and-scroll” console style application and into a web browser-based user
interface.

One or more users at each physical site (hospital, clinic, etc) in the VA hold roles within the PCMM
application (such as PCMM Coordinator, Traveling Veteran Coordinator, VISN Coordinator, and
National Administrator). Each role has associated access privileges which allow the person filling that
role to perform functions within PCMM. The business process/flows for patient assignment in PCMMR is
outlined in the following embedded document:

PCMMR
System Design Document 9 February 2014

PatientNeedsAssign
ment.vsd

PCMMR
System Design Document 10 February 2014

2.2. Overview of the Business Process
Below are several business process diagrams accompanied by a table describing their users and purposes.
Cross reference the ID of each diagram with the ID in the table.

BPD1 – Add Other Providers

BPD2 – Assign Care Team to New Group

PCMMR
System Design Document 11 February 2014

BPD3 – Assign Patient to Provider

BPD4 – Assign Patient to Team

PCMMR
System Design Document 12 February 2014

BPD5 – Assign Positions to Team

BPD6 – Edit Care Team Profile

PCMMR
System Design Document 13 February 2014

BPD7 – Generate PCMMR Report

BPD8 – Identify Other Providers (PCMMR Coordinator point of view)

PCMMR
System Design Document 14 February 2014

BPD9 – Identify Other Providers (Team Staff point of view)

BPD10 – Patient Team Status

PCMMR
System Design Document 15 February 2014

BPD11 – Select Notifications

BPD12 – User Interface

PCMMR
System Design Document 16 February 2014

BPD13 – User Interface (by role)

Table 3 Business Processes
Business
Process

ID

Business
Process

Name Type Owner Description
1 Add Other

Providers
Modernized All Users General provider assignment to patient. This

may or may not be implemented in PCMMR
due to business requirements.

2 Assign Care
Team to
New Group

Modernized All Users In this model, Teams can be grouped together
and this shows the process by which a team is
assigned to a group. Groups may or may not
be implemented in PCMMR due to additional
ways to easily search and organize Teams.

3 Assign
Patient to
Provider

Modernized All Users This diagram shows how to assign a patient to
a provider on a team. This generally was
revamped in PCMMR such that a patient is
directly assigned to a Team, and can
optionally then be assigned to a PCP or
associate on the team.

4 Assign
Patient to
Team

Modernized PCMMR
Coordinator

The PCMMR Coordinator at a specific station
can assign patients to existing teams, or create
a new team if one doesn’t exist that’s
appropriate for the patient. Based on various
logic as to whether the patient has one or more
Primary Care Providers (PCPs), different
options can be taken and parties notified (such
as the Traveling Veteran Coordinator,
previously referred to as the Referral Case
Manager, in the event of a Multi-PCP request).

5 Assign
Positions to
Team

Modernized All Users Describes how to assign a new Position to a
Team. Each position must be assigned a Role,
but need not immediately have a Staff member

PCMMR
System Design Document 17 February 2014

assigned. Although not built for the prototype,
Notifications will eventually be selected.
Clinics will not be implemented per the
business.

6 Edit Care
Team
Profile

Modernized All Users This flow describes the process of editing a
Team. Room information will not be stored
per the business.

7 Generate
PCMMR
Report

Modernized All Users This flow describes how users will create
reports. Canned reports follow the process
shown except that the “printing options”
(which probably means the file type – PDF,
XLS, etc) are integreated into the same Report
Parameters page as other report inputs. Ad-
Hoc reporting and scheduled reports are both
future enhancements.

8 Identify
Other
Providers

Modernized PCMMR
Coordinator

This describes the method by which a
PCMMR Coordinator can receive a request to
add an external VA or non-VA provider to an
individual patient that does not reside in the
normal care team for the patient.

9 Identify
Other
Providers

Modernized Team Staff This flow is identical to the previous flow
except that it represents the action of adding
an external VA or non-VA provider to a
patient from the Team Staff point of view.

10 Patient
Team Status

Modernized All Users This flow describes how certain items in
PCMMR will become inactivated
automatically, unless an encounter is recorded
in CPRS. During reactivation, if the encounter
was with the PACT team defined and
managed within PCMMR, the patient status is
automatically set to “active,” otherwise a set
of business rules is activated based on the
encounter to determine whether to reactivate
the patient.

11 Select
Notifications

Modernized All Users This describes the process by which
Notifications can be configured by the system.
The Surrogate function allows for a different
VA staff member to take over as recipient to
some notifications.

12 User
Interface

Modernized All Users This flow represents the typical user
experience provided by PCMMR when editing
a patient. The user logs in, searches for the
patient and is taken to his or her profile. Then
the user assigns the patient to a Team or to
non-PACT providers.

13 User
Interface

Modernized Various
Roles

From the point of view of various other roles,
PCMMR can be used in several ways. The
system may automatically update the
Patient/Team status based on CPRS encounter
data (see item 10 above). The PCMMR
Coordinator generally will run reports. Team

PCMMR
System Design Document 18 February 2014

Staff members will assign patients to teams
and external non-PACT team providers (see
item 12 above). PCMMR Coordinators will
manage Teams, Positions and Patients
(although Groups will not be developed)

2.3. Business Benefits
One of the business problems with the legacy PCMM application is the fact that PCMM coordinators at
different sites enter data using separate local naming standards and business processes. For example, to
add explicit links between patients and providers, some sites create entirely new teams and reassign sets
of patients in bulk, whereas other sites rename or create new positions within the original team. It
becomes challenging for the VA to provide sensical reporting across sites, or for sites to communicate
intelligently with each other about patient allocations. The VA will benefit from PCMMR since it can
save money previously wasted on users coordinating differences between sites and data analysts spending
lots of time cleaning up data for accurate reporting.

Installation and maintenance of the software is another advantage. By having a single enterprise
installation, the VA won’t need to slowly coordinate/synchronize 130 separate application upgrades, or
pay system administrators at each separate site responsible for the VistA patch. Also, since PCMMR is
built using J2EE tools rather than MUMPS/Delphi, the VA gains the flexibility of selecting amongst a
large set of development teams for future maintenance.

Finally, the data quality in PCMMR will be better than in the legacy application since it will integrate
with the Master Veteran Index (MVI) data set, managed by the Identity and Access Management (IAM)
team. This index provides an authoritative source of identity information about all VA patients. Currently,
each VistA site contains a separate copy of patients. Problems can arise when PCMM coordinators search
for patients who have recently changed their name or social security number. requiring extra time to
resolve the differences and clean up data. By synchronizing its data with MVI, PCMMR allows the users
to search against the latest updated set of patient identity information, and prevents the need for the VA to
spend time and money resolving inconsistencies.

PCMMR
System Design Document 19 February 2014

2.4. Assumptions and Constraints

2.4.1. Design Assumptions
• Since PCMMR will be deployed as a portlet partner application to the shared parent CISS portal,

common data elements (e.g. users, profiles, SDS lookup tables) will be shared and cross-
referenced within a single database and all PCMMR data will reside within that database as an
independent schema.

• VA Network connectivity will be unimpeded between users’ specific sites and the final
deployment location of the CISS portal application. The PCMMR portlet application will be
connected to the CISS portal behind the scenes, but users will not need network access to the
specific machines that host the PCMMR remote portlet.

• Disabled users will continue to use screen readers and other assistance tools compatible with
Section 508 to access all functionality of the final PCMMR system. This is consistent with the
plan for PCMMR to be fully 508-compliant, as noted in section 1.6.

• The existing design of the legacy PCMM application which makes heavy use of tabs and
Windows GUI interface elements will be replaced with a new screen-by-screen webpage
interface. This new interface will provide all existing PCMM functionality, but in a more
separated, “clean” approach.

• Military time will be the standard for UI input and display. All times will be entered and
displayed in the user’s local timezone, which is synchronized with the user’s session on login to
the application.

• The VA standard inactive period of 15 minutes applies to this system, and the user will be
automatically logged out unless they choose to remain active.

2.4.2. Design Constraints
Although the existing CISS partner application, OHRS, was developed in Adobe Flex, support for this
product has recently been discontinued by Adobe in favor of HTML5 and other dynamic front-end tools1.
Because of this shift (and due to the extra development effort and cost needed2 to use Flex), the PCMMR
development team chose to adopt the Spring Portlet MVC/JSP/JSTL tool stack for server-side
presentation layer code and jQuery JavaScript framework for its lightweight client-side needs. The former
set of tools was chosen for the following reasons:

• Tool maturity – Spring has an active developer community and has existed for years across the
industry. It has become the framework of choice for many web application developers.

• Standards-based – JSP and JSTL are first-class members of the latest J2EE standard3 and are
among the most common tools used for client-side markup generation.4

• Familiarity with development team – All developers on the PCMMR team are well-versed in
these tools.

PCMMR
System Design Document 20 February 2014

• CISS framework consistency – The CISS framework uses Spring, JSP, and JSTL, so continuing
to use these tools keeps the codebase consistent.

JQuery became the JavaScript framework of choice due to the following reasons:

• Maturity – jQuery has existed since 2006. It is used by over 55% of the 10,000 most visited
websites and is the most popular JavaScript library in use today.5 It has an active development
community and forums for support.

• Cross-browser compatibility layer and CSS3 compliant – The fact that jQuery works across
multiple web browsers is particularly valuable to the VA, since the VA allows for Internet
Explorer versions 6-9.

• High number of overall features compared to other JavaScript frameworks.6

• Simple notation – Very little code is necessary to write powerful jQuery expressions.

• Modular– The jQuery framework allows for custom plugins to be used for enhanced
functionality. If the VA needed to enhance or patch jQuery code later, it could do so under its
own custom module.

• License flexibility – jQuery offers end users complete flexibility to modify, enhance, and
redistribute any or all of its files as long as the copyright header is left intact, per the MIT
License.7

PCMMR is a JSR-286 portlet which means it must abide by the portlet specification. Part of the
specification is a multi-stage rendering process, during which the WebLogic application container
manages things like form submissions, the transfer of events to and from other portlets, and requesting
markup to be delivered from each portlet for final page rendering. Due to this complex rendering process,
PCMMR needs to work around several small issues to accommodate its advanced requirements. These
workarounds include support for AJAX calls by the front-end jQuery framework, connecting the HTTP
session handling, establishing a shared CISS context with other portlets (which contains the logged-in
user, selected timezone, and duty station) via Portlet event handling, and retrofitting several Servlet-based
designs into the portlet space.

2.5. Overview of the Significant Requirements

2.5.1. Overview of Significant Functional Requirements
Table 4 Functional Requirements

ID

Specific
Requirement
/ Synopsis Requirement

2 Provide the ability to create and maintain a VHA enterprise level
PCMMR system (as opposed to 128 individual disconnected PC

5 http://trends.builtwith.com/javascript/JQuery
6 http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks
7 http://jquery.org/license/

PCMMR
System Design Document 21 February 2014

services).

3 Provide the ability to view VHA and non-VHA PCP, Team and
Team member information in the patient‟s Electronic Medical
Record (EMR), i.e., CPRS.

4 Provide the ability to manage specialty care teams (i.e. Mental
Health, Cardiology, Pulmonary, Long Term Care, etc.) within
PCMMR.

5 Group teams together: PCMMR teams will be reorganized so that
there is one PCP per Team and if this is done there is a need for a
way to associate multiple PC Teams with the larger collaborative
team (e.g. Blue Team) which represents a grouping of PC Providers
and teams who work together.

6 Flag patients in PCMMR that have completed In-Person
Authentication and are to communicate via secure messaging and
display as icon next to patient listing.

7 Update the Veterans Handbook: Retrieve PC provider location
information (e.g. phone numbers and facility address) from
PCMMR.

8 Provide a Centralized Data Base.

2.5.2. Functional Workload and Functional Performance Requirements
Table 5 Workload and Performance Requirements

ID Requirement
7.2.1.1 Primary Care, Mental Health, OEF/OIF, CAC(clinical reminders), Spinal Cord Injury,

Medicine, Surgical, and Emergency Department, Home Based Primary Care, etc. This
does not include the Non VA facilities. All may need access to rehosted PCMMR.
Prediction is double the 2760, add 50 states and 5 territories (Philippines Is., Guam,
Samoa, Puerto Rico, Virgin Is.) non-va facilities access.

7.2.1.1 -
Performance

It is anticipated that PCMMR functionality will be used to manage coordination of
care between Primary Care, Specialty Services, and special veteran populations;
therefore we expect users at least quadruple to 2244 users simultaneously. (source:
Specialty, MH, OEF, Referral Case Mgrs) Despite the PCMMR software traffic going
directly to a central database, response times will remain unchanged.

7.2.1.2 - Capacity Individual transactions vary greatly depending upon what is involved with each one.
Examples include set up team, assigning and unassigning a patient to a team and
provider, activate/inactivate teams, assign/unassign (patient) to team, and
assign/unassign staff.

These activities can take seconds up to approximately two hours. Estimation that the
system shall support a minimum of 1000 simultaneous users performing write and

PCMMR
System Design Document 22 February 2014

read transactions that each average 30 KB per, during the estimated peak usage hours
of 8am – 11pm EST during weekdays

7.2.1.2 - Capacity The system shall respond to user actions within three seconds or less 95% of the time
under normal user loads of 1000 simultaneous user requests, and within five seconds
or less 90% of the time under peak loads.

7.2.1.2 - Capacity The numbers of transactions are expected to grow as the new enhancement
capabilities move through implementation.

The PCMMR project conforms to existing IT Infrastructure Standards since it is simply an extension of
the CISS /OHRS project which itself conforms to those standards.

The tables below list all current NSR entries on file with the Infrastructure team, the custom Integration
Agreements (IA) and Integration Control Registrations (ICR).

Service Category Status
SDS support MS
SQLServer

Terminology NSR #20081117
Submitted and
Reviewed

KAAJEE VPID/DUZ
specification

Common Services NSR #20080903
Submitted and
Reviewed

CISS access to private
KAAJEE api

Common Services ICR #5255 created by
KAAJEE team and
Approved

XUS KAAJEE GET USER
INFO

Common Services ICR #5256 created by
KAAJEE team and
Approved

XUS KAAJEE LOGOUT Common Services ICR #5257 created by
KAAJEE team and
Approved

Access to Central PAID
data

Identity
Management

MOU signed by Roy
Coles in 11/2008

Access to Volunteer data in
VSS

Identity
Management

ICR #5258 created by
CISS team and
Approved;

Follow-on MOU
submitted by CISS in
11/2008

Note: KAAJEE items (and possibly other authentication/authorization components like LDAP) will be
eventually replaced with Identity Management Access Services / Single Sign On (SSO) at the CISS
framework level.

PCMMR
System Design Document 23 February 2014

2.5.3. Operational Requirements
Table 6 Operational Requirements

ID Requirement
7.2.1.2 The application will need access to the Austin Information Technology Center

(AITC), and is used by the VHA VSSC to derive a number of patient care statistics,
measures, and other information related to PC Management in support of Health Care
Operations in VHA.This application will also interface with CPRS, VistA scheduling,
and VHA CDW

2.5.4. Overview of the Technical Requirements
Table 7 Technical Requirements

User Story Requirement
Active Panel Report As an authorized PCMM2 User, I want to be able to generate the Active Panel

Report so that I may review capacity and FTEE for each team.
Adhoc and Canned
Reporting

As an authorized PCMM2 System, I want to be able to access any canned or
adhoc reports through the SQL Server Reporting Services (SSRS) so that I
may run pre-existing reports or create new reports.

Assign Patient to a
Team and Position

As an authorized PCMM2 User, I want to be able to assign a Patient to a team and
allow the user to choose which provider position is to be assigned if it is a Primary
Care Team so that I may assign/track patient care.

Assign Room to
Team

As an authorized PCMM2 User, I want to be able to assign a room to a
team, allow the user to choose the team to be assigned and view the room
assignment so that I may assign/track room FTE. Also, I want to be able to
unassign a team from a room.

Assign Staff to a
Position

As an authorized PCMM2 User, I want to be able to assign a staff member to a
position so that I may assign patients to it.

Assign/Unassign
Team to Group

As an authorized PCMM2 User, I want to be able to assign a team to a
group, allow the user to choose the team to be assigned and view the group
assignment so that I may assign/track team assignments to groups. Also, I
want to be able to unassign a team from a group and display the history.

Associate Patient to
Non-VA Provider

As an authorized PCMM2 user, I want to be able to associate a Non-VA
provider’s information with a patient’s profile.

Batch Auto-
Inactivation

As the PCMM automated system, I want to interrogate the encounters a patient has
with his providers and have a notice sent out at 120 days before a patient is at risk
to be unassigned due to inactivity within pre-defined periods of time or a Date of
Death entry being recorded from any teams/positions to which he is currently
assigned so that the teams have availability to treat active patients.

Batch Historical
Assign Mass
Patients

As an authorized PCMM2 User (PCMM Coordinator), I want to be able to select
one or many patients from historical assignments and assign to a team or team
position using a form that allows a batch process to run so that I may continue to
work while it is running in the background.

Batch Staff Update As the PCMM automated system, I want to have up-to-date information on the
providers captured in the PCMMR staff profile so that the correct information will
display in PCMMR as well as CPRS.

Batch Transfer As an authorized PCMM2 User (PCMM Coordinator), I want to be able to select

PCMMR
System Design Document 24 February 2014

Unassign Mass
Patients

one or many patients to transfer or unassign to/from a team or team position using
a form that allows a batch process to run so that I may continue to work while it is
running in the background.

Batch Job Execution
Results

As an authorized PCMM2 User, I want to be able to submit potential long
running tasks to batch so I may continue to work while it is running in the
background.

CPRS Primary Care
Header

As a CPRS user, I want the Primary Care area of the CPRS header to indicate if a
patient is assigned to a Primary Care Team at more than one facility (dual); if a
patient’s assignment to a Primary Care Team is pending; or if a patient’s
assignment to a Primary Care Team is at the local facility or a remote facility so
that this information can be utilized by the clinicians serving the patient. I also
want to see at a glance if the patient is an Inpatient and/or assigned to a Mental
Health team.

CPRS Primary Care
Window

As a CPRS user, I want to see a display of the patient’s assigned Care Teams with
contact information in the window accessed via the Primary Care (PC) area of the
CPRS Patient Chart so that this information can be utilized by the clinicians
serving the patient.

Completed Reports As an authorized PCMM2 User, I want to be able to view a report once it has been
generated.

Create a Team
Position Profile

As an authorized PCMM2 User, I want to be able to create a position profile for a
selected team so that I may assign staff to it.

Create a Team
Profile

As an authorized PCMM2 User, I want to be able to create a team so that I may
assign rooms/roles/staff to it.

Create a Non-VA
Provider

As an authorized PCMM2 user, I want to be able to manually enter and
update/view a Non-VA provider’s information into the PCMM system.

Create Notifications
Distribution Section

As an authorized PCMM2 User (PCMM Coordinator), I want to be able to create
notifications distribution information so that I can view the origination and settings
for the notifications needed.

Create Room Profile As an authorized PCMM2 user, I want to be able to create room profile
information and add to the List All Rooms screen so that I can view the newly
created rooms. Also, add a new sub-menu option for Create a Room Profile to
allow the user this functionality from the main menu “Room.”

Create Update
Group Profile

As an authorized PCMM2 user, I want to be able to access a new menu option for
Group that allows users to create a new Group and update a Group so that the
group information can be added to PCMM system.

Home Page and
Main Menu

As a PCMM Coordinator, I want to be able to login to PCMM using the CISS
portal so I can read announcements and perform my tasks. Also, once in PCMM, I
want to be able to access the links provided from the Main Menu ‘Reference’ tab
so I can view policies/procedures and other publications.

Legacy PCMM to
PCMMR Data
Exchange

As an authorized PCMM2 System, I want to be able to interrogate the results of
the Date of Death triggers initiated from VistA and write the results back to
PCMM/R.

Login to PCMM As an authorized PCMM2 User, I want to be able to be able to logon to PCMM so
that I may utilize the application.

Login to CISS As an authorized PCMM2 User, I want to be able to be able to logon to CISS so
that I can launch PCMM.

Logout of
PCMM/CISS

As an authorized PCMM2 User, I want to be able to be able to logout of
PCMM/CISS so that I may exit the application.

Manage Alerts As an authorized PCMM2 User, I want to be able to view a list of alerts for my
station and my role so I can act on them accordingly

Manage Groups As an authorized PCMM2 User, I want to be able to view a list of existing groups

PCMMR
System Design Document 25 February 2014

so that I may choose one to view detailed information.
Manage New User As an authorized user I want to be able to create/update/inactivate/unlock a system

user so that they can access PCMM/R and perform their authorized functions.
Manage
Notifications
Distribution

As an authorized PCMM2 User (PCMM Coordinator) , I want to be able to set up
the distribution of notifications to the appropriate Team members and positions so
that the staff assigned to the Teams and Positions will receive the Notifications for
patients that are assigned to teams/positions independent of where the notification
for the patient is triggered. (Dr Stark example –patient on PACT in NY goes to FL
and gets admitted. Team/positions in NY will get notification of the admission
that took place in FL.

Manage Reference
Data for Selection
Lists

As a PCMM National Coordinator I want to be able to modify (add, edit,
delete/inactivate) items on the dropdown lists within PCMM, so that the selection
list of valid values will not require modification by OI&T/developer involvement
and will available for selection immediately after being made.

Manage Rooms As an authorized PCMM2 User, I want to be able to view a list of existing rooms
so that I may choose one to view, edit or delete information.

Manage Team
Positions

As an authorized PCMM2 User, I want to be able to view a list of existing teams
so that I may choose an existing position to view or update information or to create
a new position.

Manage Teams As an authorized PCMM2 User, I want to be able to view a list of existing teams
so that I may choose one to view, edit or delete information for.

Modeled Team
Capacity
Calculations

As an authorized PCMM2 User, I want to be able to have the system calculate the
Modeled Team Capacity so that each team may utilize it as their recommended
panel size.

Multiple PCP
Assignment Action

As an authorized PCMM2 User, I want to be able to designate the patient is
approved/denied for Multiple Primary Care Provider (MPCP) assignment(s) and/or
edit the form so that I may confirm the patient is eligible for primary care at other
stations.

Multiple PCP
Assignment Capture
and Display

As an authorized PCMM2 User, I want to be able to designate the patient is
eligible/approved for multiple Primary Care Provider (PCP) assignments so that I
may confirm he is assigned to the correct Primary Care team(s) at the correct
station(s).

Patient Merge from
MVI

As an authorized PCMM2 System, I want to be able to receive and process update
messages for each patient that PCMMR has registered for interest in that are
received from MVI so PCMMR can keep current with MVI and other applications.
This includes notification when the ICN is first assigned to a patient, an ICN is
updated for a patient for a station/dfn, or when a VistA record merge occurs and
PCMMR has registered interest that is not the primary source ID. This is known to
MVI as Resolve Duplicate – Merge and these are sent to PCMMR on an A24
transaction. NOTE: There may be 2 different patient records with the same ICN
for a period of time while these txns are running.

Patient Move from
MVI

As an authorized PCMM2 System, I want to be able to receive and process update
messages that are received from MVI for each patient that PCMMR has registered
for interest in so PCMMR can keep current with MVI and other applications. This
includes notification when one patient is moved from one ICN to another. MVI
refers to this as ICN mismatch.

Patient Updates from
MVI

As an authorized PCMM2 System, I want to be able to receive and process update
messages for each patient that PCMMR has registered for interest in that are
received from MVI so PCMMR can keep current with MVI and other applications.

PCMMR to Legacy
PCMM Data

As an authorized PCMM2 System, I want to be able to send the teams and
assignments entered into PCMM/R to PCMM so they will be available for VistA

PCMMR
System Design Document 26 February 2014

Exchange applications including CPRS.
Query Patient and
Register Interest in
MVI

As an authorized PCMM2 System, I want to be able to search MVI for a patient in
the background so it can validate the patient is known to MVI, register PCMMR to
receive updates, receive the list of treating facilities for the patient and receive the
most current patient demographic information for display in PCMMR.

Report List As an authorized PCMM2 User, I want to be able to view a list of standard reports
from the Reports menu.

Report Parameters As an authorized PCMM2 User, I want to be able to enter/select parameters for the
selected report from the “Report List” menu.

Reporting –
Sensitive Patient
Access Log

As an authorized PCMM2 System, I want to be able to access the Sensitive Patient
Access Log through the SQL Server Reporting Services (SSRS) so that I may view
who has been accessing sensitive patients.

Restrict Access for
Employee Viewing
Own Data

As PCMM system, I want to be able to restrict an employee from viewing his own
records so that I may fulfill VA requirements.

Search for Group As an authorized PCMM2 User, I want to be able to access a menu option for
Group for search to allow the user to perform a search for existing Groups within
the PCMM system so that I can view the group’s information.

Search for Patient As an authorized PCMM2 User, I want to be able to search for a patient so that I
may update his profile information or assign him to a position/team.

Search for Room As an authorized PCMM2 User, I want to be able to access a new menu option for
Room search and allow the user to perform a search for a Room within the PCMM
system.

Search for Non-VA
Provider

As an authorized PCMM2 User, I want to be able to access a new menu option for
Non-VA search and allow the user to perform a search for a Non-VA provider
within the PCMM system.

Search or Maintain
Model Team
Configuration

As an authorized PCMM2 User, I want to be search for an existing Model Team
Configuration or be able to create, view or maintain a Model Team Configuration
so that it can be used to create default Team Positions when creating new Teams,
allow teams to reconcile against the model, and to validate Teams adherence to the
Model.

Search Staff by
Name

As an authorized PCMM2 User, I want to be able to search for staff by name so
that I may assign staff to a position.

Search Team by
Name

As an authorized PCMM2 User, I want to be able to search for a team so that I
may work with its profile information or assign him to a patient.

Unassign Patient
from a Team

As an authorized PCMM2 User, I want to be able to completely unassign a
Patient from a team he is currently assigned to so that I may re-assign him
to another team or indicate care/team assignment is no longer needed.

Unassociate Patient
from Non-VA
Provider

As an authorized PCMM2 user, I want to be able to remove an association
of a Non-VA provider from a patient’s profile.

Update Facility List
from MVI

As an authorized PCMM2 System, I want to be able to receive and process
update treating facility list messages for each patient that PCMMR has
registered for interest in from MVI so PCMMR can keep current with MVI
on all treating facilities that patient has a presence at. The treating facility
list is a list of systems that know a specific Integration Control Number
(ICN). The list can contain systems that are not VAMC like FHIE or HDR.
PCMMR will only update the Treating Facilities.

Update a Team
Position Profile

As an authorized PCMM2 User, I want to be able to update a Position’s
profile so that I can keep it current.

PCMMR
System Design Document 27 February 2014

Update a Team
Profile

As an authorized PCMM2 User, I want to be able to update a team’s profile
so that I can keep it current.

Update Primary Care
Intensity Score

As an authorized PCMM2 User, I want to be able to update the primary care
intensity score for a station so that it can be used to adjust the modeled team
capacity calculations at a station and team level.

View a Patient
Profile

As an authorized PCMM2 User, I want to be able to view the profile for a patient
so that I may confirm he is the patient I wish to work with and I may update/view
his multi-PCP indicator.

View Aggregate
Model Capacity

As an authorized PCMM2 User, I want to be view the aggregate Modeled
Team Capacity (ie panel size) for each team care type at a station level so
that I can analyze and validate the station and its team’s adherence to the
recommended model panel size.

View Panel
Placement Request

As an authorized PCMM2 User, I want to be able to create a Panel
Placement Request so that I may capture and display my request to the
receiving team/station.

View Patients
Assigned to a
Position

As an authorized PCMM2 User, I want to be able to view the patients
assigned to a position within a team so that I can see the patients assigned to
each team member.

View Patients
Assigned to a Team

As an authorized PCMM2 User, I want to be able to view the patients
assigned to a team so that I can see the patients latest assignment details.

View Patient
Assignment History

As an authorized PCMM2 User, I want to be able to view which
teams/positions/staff members each patient was assigned to at any point in
time so that I may validate which team and staff member was responsible
for patient care during that period of time.

View Staff Profile As an authorized PCMM2 User (PCMM Coordinator), I want to be able to
search for VA staff member and display that staff member’s information on
the profile screen.

View Team in CPRS
Patient Header

As an authorized PCMM2 User, I want to be able to view the patient’s
Primary Care team, provider, associate provider on the first line and the
Mental Health Coordinator on the third line of the CPRS Header so that this
information can be utilized by the clinicians serving the patient.

View Team in CPRS
Primary Care Screen

As an authorized PCMM2 User, I want to be able to view the patient’s
Primary Care team, provider, associate provider and Mental Health
Coordinator and contact info so that this information can be utilized by the
clinicians serving the patient.

PCMMR is fully compliant with the One-VA Technical Reference Model (TRM), using only those tools
which are approved without constraints, or tools having constraints but for which it meets those
constraints (such as Maven). See section 1.7.1 for a listing of specific tools in the TRM.

PCMMR is also fully compliant with the VA Enterprise Architecture since it is only a sub-module
participating in the larger CISS framework, which is itself compliant with the VA Enterprise Architecture.
See section 1.7.2 for a listing of release architecture components.

2.5.5. Overview of the Security or Privacy Requirements

PCMMR
System Design Document 28 February 2014

2.5.6. System Criticality and High Availability Requirements
Table 5 Availability Requirements

ID Requirement
7.2.1.3 -
Availability

Should be available 24/7/365 (100%) To ensure the most efficient and effective
operational status this system needs to be available at all times and should be
maintained with scheduled back up regularity and maintenance.

The PCMMR application will be deployed in a staged approach across the various nodes of the
production cluster, such that existing nodes can service current user requests while other nodes are being
upgraded. If database changes also are required, existing data will be backed up in its entirety before any
upgrades are made.

PCMMR will have a detached, co-located disaster recovery (DR) environment alongside other similar DR
environments for CISS and the other partner applications of CISS. In the event of a catastrophic outage at
the primary production hosting facility, the secondary DR instance can stand in as an interim production
system. A data transition / replication may need to occur prior to the DR environment coming online, to
ensure the latest user changes were captured.

Additional features to ensure uptime are:

• At the OS level with the Virtual server VMware Hosts ability to move VM’s from HOST to
HOST with no interruptions.

• Duplication of VM Hosts between the Datacenters.

• Database Replication between the Datacenters in real time.

• Database Clustering at the Microsoft Operating System and Microsoft SQLServer Level.

• Weblogic Clustering.

• Load balancers that monitor the availability of the actual Weblogic JVM’s.

2.6. Legacy System Retirement
Table 9 Proposed Legacy Retirements

Legacy System or Legacy
System Component

Retired or Workload
Reduced

If Workload Reduced – How
Much

PCMM Retired N/A
VSSC / CDW Workload Reduced Some reporting provided by these

tools may be now re-implemented
as canned or ad-hoc reports
within the new PCMMR

PCMMR
System Design Document 29 February 2014

3. Conceptual Design
3.1. Conceptual Application Design

3.1.1. Application Context
Figure 1 PCMMR Application Context Diagram

PCMM

CISS
framework

CISS
database

MVI
VistaLink

Binary
library

WebLogic
shared
library

HL7 / Web
Services

JDBC

JDBC

Vista [1..n]

Socket

PCMMR
System Design Document 30 February 2014

 Table 10 Application Context Description
Objects

Name Description Interface Name Interface
System

CISS
Framework

Portal container which provides
security layer (users, roles,
permissions) and a portal login page
which authenticates users against VA
Active Directory before forwarding
their session on to the PCMMR
application

Direct code access thru shared
library and typical servlet
environment (no CCOW / SSO /
WebServices)

CISS database,
VistaLink

MVI Authoritative source of veteran
identity information

Web Services to query and
retrieve patient data; HL7
message stream to capture
identify management changes

Various systems
throughout the
VA also
exchanging
identity data

VistaLink Provides a Java-compatible
connection to a set of remote VistA
systems

Deployed as a shared library (for
access by applications) and also
as a WebLogic resource adapter
and console web application for
monitoring

All remote VistA
instances

PCMMR
System Design Document 31 February 2014

3.1.2. High Level Application Design
Figure 2 Sample High Level Application Design

PCMM

CISS
framework

CISS
database

MVI

VistaLink

Binary
library

WebLogic
shared library

HL7 / Web
Services

JDBC

JDBC

Vista [1..n]

Socket
User (Web
Browser UI) HTTPS

Web Layer

Transactional Service
Layer Automated Batch

Processes

Persistence Layer

PCMMR
System Design Document 32 February 2014

 Table 11 Objects in the High-Level Application Design

Name ID Description
Service or Legacy
Code

External Interface
Name

External
Interface ID Internal Interface Name

SDP
Sections

1&2
User (Web Browser UI) 1 Represents end users connecting to

the enterprise PCMMR application
via a web browser

New Web layer 2 HTTP / HTTPS socket
connections

Being
Developed

Web layer 2 Contains the presentation tools and
markup necessary to deliver the user
interface to the users, and collect data
from users when editing PCMMR
objects

New User (Web Browser
UI)

1 Controller Java classes via
Spring MVC, grouped in the
gov.va.med.pcmm.web
package

Being
Developed

Transactional Service
Layer

3 A set of objects performing all
business logic and validations in the
application. These items
automatically create database
transactions around their units of
work, and operate in an atomic
fashion.

New None N/A *Service / *ServiceImpl Java
classes inside the
gov.va.med.pcmm.service
package

Being
Developed

Automated Batch
Processes

4 A set of independent processes that
perform various maintenance tasks
for operational support in PCMMR

New Headless N/A @Scheduled proxy class
provided by Spring to activate
classes via cron syntax or
fixed delays

Being
Developed

Persistence Layer 5 A set of objects whose responsibility
is to abstract the data transmittal
to/from various external data sources,
such as VistA, LDAP, SQL database

New None N/A *DAO / *DAOImpl Java
classes inside the
gov.va.med.pcmm.persistence
package

Being
Developed

PCMMR
System Design Document 33 February 2014

3.1.3. Application Locations

Table 12 Application Locations
Application
Component Description

Location at Which
Component is Run Type

PCMMR Attended
server

WebLogic domain instance
which handles PCMMR
user-facing (web) requests

 Falling Waters, WV data
center, on the same virtual
machine as the CISS
domain instance

EAR application file
containing all layers of
the application

PCMMR
Unattended
server(s)

WebLogic domain instance
which handles batch
processing and report
execution

Falling Waters, WV data
center, on the same virtual
machine as the CISS
domain instance

EAR application file
containing the batch
process and reporting
components of
PCMMR

Disaster Recovery
PCMMR Attended
Server

WebLogic domain instance
which handles PCMMR
user-facing (web) requests

 Hines, OR data center, on
the same virtual machine
as the DR CISS domain
instance

EAR application file
containing all layers of
the application

Disaster Recovery
PCMMR
Unattended
server(s)

WebLogic domain instance
which handles batch
processing and report
execution

Hines, OR data center, on
the same virtual machine
as the DR CISS domain
instance

EAR application file
containing the batch
process and reporting
components of
PCMMR

VistA PCMMR
module

RPCs and MUMPS code
inside VistA which serves as
a broker between the
enterprise PCMMR instance
and downstream systems

130 VistA sites across the
US

Interface Code

3.1.4. Application Users
Table 13 Application Users

Application
Component Location User

PCMMR Web
Interface

130 VistA sites across the US PCMMR coordinators, traveling veteran
coordinators and all other application users

PCMMR
Administration
tools

Dependent on the user’s location;
accessible from anywhere on the VA
network

PCMMR National Coordinator

PCMMR
System Design Document 34 February 2014

3.2. Conceptual Data Design

3.2.1. Project Conceptual Data Model

The current data model is depicted in the PCMM_DataModel.pdf document, in the source control
repository for PCMMR under the docs/A&D_Docs folder.

Conceptually, there are several groups of tables within the PCMMR schema, which itself lives within the
larger CISS database and has foreign keys into those CISS and sdsadm tables.

• The “lookup” tables, starting by convention with the prefix “PCM_STD_”, contain fixed
reference values which rarely change, and are generally considered read-only within the
application context.

• The audit history tables ending in “_H” are populated solely via internal database triggers each
time a row in the corresponding table is inserted, updated or modified. For example the
PCMM.STAFF_POSITION_ASSIGNMENT table has a corresponding
PCMM.STAFF_POSITION_ASSIGNMENT_H table which can be used for auditing purposes
later to recreate who made what changes at what times.

• The main domain tables representing the primary business domain objects, such as Teams,
Positions, Staff and Assignments. These tables form the primary set of data within the PCMMR
database.

3.2.2. Database Information
Table 14 Database Inventory

Database Name Description Type Steward
Legacy PCMM VistA files FileMan files, located within each

VistA site, accessed via specific
APIs and RPCs. These files
contain all existing patient,
provider, team and position
information for PCMMR.

Legacy data
store

VistA site

CDW PCMM consolidated
data store

The CDW contains an aggregation
of legacy data across all VistA
sites which is currently used for
analysis and regional/national
reporting.

Legacy data
store

CDW team

CISS This database is shared by the
main CISS framework, the OHRS
partner application which uses the
“OHRS” schema, as well as the
“PCMMR” partner application
which uses the “PCMMR”
schema. It also includes standard
data in the “sdsadm” and standard

Replace old
separate PCMM
data stores

Partnership
between CISS,
OHRS, and
PCMMR teams
(and possibly
other future
partner
applications)

PCMMR
System Design Document 35 February 2014

terminology in the “sts” schemas,
although those may be updated to
a code API-approach.

WEBLOGIC_CISS_RELX This database is used internally by
the WebLogic Portal Server
container for the purpose of
managing its portal configuration
and delivering content thru the
embedded WebLogic content
management system (CMS).
Currently OHRS and CISS share
this database but PCMMR doesn’t
use any of these features; if and
when PCMMR needs a CMS,
another database will be created
called
WEBLOGIC_PCMM_RELX.

Interfaced with Partnership
between CISS,
OHRS

As part of the adoption of the new PCMMR application at each specific VistA site, an
extraction/transformation/load (ETL) process will be executed against the CDW data for that site. The
logical model for this process is embedded here:

3.3. CISS Infrastructure including PCMMR partner application

PCMMR
System Design Document 36 February 2014

This context diagram identifies specific enterprise services and applications with which CISS and
PCMMR will interface. CISS will be integrated in the current VHA infrastructure and contain interfaces
to various enterprise services identified in the following table.

Service Category Integration

Technology
Notes

VistA Enterprise VistaLink
Active Directory Enterprise Spring LDAP Authentication and

Authorization
CISS Database Internal Java Persistence

Application
Programming
Interface (API)
(JPA)

Database for CISS and
PCMMR

PCMMR Partner Application Java Portlet (via
WSRP local proxy)

CMS Internal Content
Management System
provided by
WebLogic Portal
Server

Provides dynamically
generated content to
CISS landing page and
homepage

Table 2 – Enterprise Interfaces

PCMMR
System Design Document 37 February 2014

3.3.1. System Criticality and High Availability
Consider the following deployment structure for PCMMR:

PCMMR has multiple Weblogic instances (potentially running in different VMs on the same or different
physical servers) that can be stopped and started independently. Each managed server (gray box) contains
a complete PCMMR runtime which works to service a customer’s web session. Once a customer logs in,
they are associated with one of the runtimes and remain associated to that server until they log out. When
one of the managed servers goes offline, the hardware load balacer at the top automatically routes all user
requests to another active runtime.

To ensure high availability, hardware upgrades can be performed on one inactive runtime while the other
continues to run and service customer requests. To ensure active users don’t have their sessions disrupted,

PCMMR
System Design Document 38 February 2014

the load balancer can be reconfigured on the fly to direct customer traffic to all but one server, and the
hardware teams can wait until all users sessions have completed before taking the server offline for
upgrades.

3.3.2. Special Technology
Table 15 Special Technology Requirements
Special Technology Description Notional Location TRM Status
Load Balancer A distribution technology that

allows user requests to be sent
to working pieces of the
application deployment

The user requests
(coming from web
browsers) will be sent
directly to the load
balancer.

Yes

3.3.3. Technology Locations
Table 16 Technology Location

Technology
Component Location Usage

Production 1

Workstations N/A
Special Hardware N/A
Interface Processors Embedded within

application code
Connectivity to Vista instances and external
application instances

Legacy Mainframe Existing VistA sites Query for existing patients and staff; synchronize
data with external systems such as CPRS and
MyHealtheVet

Legacy Application
Server

N/A No host application server is necessary to run the
legacy PCMM software

Legacy Databases Internal VistA files
(see Legacy
Mainframe above)

Storage of all VistA data

Source Code
Repository

HP–cloud hosted
development
Subversion server and
Rational ClearCase
server on VA network

Daily code checkins and builds in SVN; periodic
stable checkins to ClearCase to meet VA
requirements

Production 2
 ESX Virtual machine

setup at Site B
Disaster Recovery environment

Certification
 Virtual Machine(s) on

VA network
Integration and additional development on VA
network to VA enterprise systems

SQA
 Virtual Machine(s) on

VA network
Internal functional, automated and smoke testing
of application during development; demo to users

PCMMR
System Design Document 39 February 2014

of new functionality
UAT
 Virtual Machine(s) on

VA network
Stable test environment updated once per sprint
for demo purposes to the VA business customer
and SMEs.

Development
 Virtual Machine(s) on

VA network
Integration environment for development team
(pre-SQA)

PCMMR
System Design Document 40 February 2014

3.3.4. Conceptual Infrastructure Diagram

3.3.4.1 Location of Environments and External Interfaces

Figure 5 CISS network overview

3.3.4.2 Conceptual Production String Diagram
The PCMMR application will be deployed into one of the represented “CISS App Servers” above and
communicate with the CISS National Database where its data is stored.

4. System Architecture
4.1. Hardware Architecture
The production PCMMR will be deployed internally in a VA-approved Red Hat Enterprise Linux virtual
machine and communicate with the existing CISS Portal Linux virtual machine over the VA network. The
virtual machine itself may be abstracted across several physical devices, such that the Virtual Machine

PCMMR
System Design Document 41 February 2014

host software can replicate and provide seamless redundancy in the event that one physical device fails.
Database Storage is on an existing Storage Area Network (SAN) located in the Martinsburg, WV data
center, which has its own set of failsafe tools. Each physical device will have multiple NICs (network
interfaces) to provide uninterrupted network connectivity, as well as redundant power supplies for the
same reason.

4.2. Software Architecture

4.2.1. CISS
The architectural goal of CISS is to provide a shared platform for the business applications of its
customers. Each business application that leverages CISS is called a “partner application” and forms a
partnership with the CISS set of services and portal infrastructure. PCMMR is an example of a partner
application, although one of its architectural goals is to be independent of CISS services and simply rely
on CISS as a portal wrapper and authentication provider.

4.2.2. Partner Applications
Each partner application must comply with and determine how it will implement the following key items:

• Integration technique (WSRP, URL)

• Local partner application or Remote partner application

• Throughput forecast for a three-year period

• Context sharing requirements

• Application role-based exposure

• Data storage location (for the PCMMR logical / physical data models, see section 5)

• Multiple authentication reduction

• COOP strategy (to include WAN failure)

The partner applications are notified of these requirements during development by the CISS team.

4.2.3. Code Framework
CISS provides a set of reusable components and services that any CISS application can leverage. These
services are discussed in the Process View.

4.3. Software Architecture – PCMMR
The primary project goal of PCMMR is to reengineer the legacy PCMM application such that all use
cases and user requirements are satisfied for each deliverable deadline: six-month initial prototype, initial
operating capacity (IOC) and final operating capability as PCMMR moves into national production
release. The architectural and design goals for PCMMR are to build a product meeting these project
requirements using only the most modern, cutting-edge tools and frameworks, and to do so using the least
amount of overhead/“boilerplate” code possible. The final PCMMR product will provide a dynamic web-
based user interface, integrate seamlessly with CISS, leverage existing VistA and other enterprise

PCMMR
System Design Document 42 February 2014

connectivity where needed, and provide privacy controls on top of its design for clinical teaming
information.

During the process of reengineering PCMM into a single enterprise application, the new architecture must
ensure that all existing systems that exchange data with legacy PCMM are not abandoned. The new
application will support exposing its internal data as web services, which can then be consumed by other
approved applications. However, the PCMMR team can’t expect all dependent systems to immediately
upgrade their software. To provide a manageable transformation of those systems, PCMMR will
synchronize necessary portions of its internal data model with legacy VistA files. This will trigger the
same events, messaging and system-to-system data exchanges as in the legacy PCMM. For more details
of this process see section 6.2.

4.3.1. CISS Compared and Contrasted
The PCMMR minimalistic approach described above can be contrasted to that of CISS, whose job is to
function as a portal framework and service provider. Whereas CISS may have more than one way of
doing something – for example, providing data via web services in addition to the normal database
approach, or implementing CCOW session sharing in addition to local and federated portlet sessions –
PCMMR strives for a lean and clean design. It will carve out only what functionality is necessary from
CISS while maintaining its own internal set of simple domain objects and services. CISS was developed
historically using large XML files to initialize tools like the Spring framework and Hibernate ORM;
PCMMR will use the more streamlined Annotation-based approach. PCMMR will adhere to the idea of
“convention over configuration” when implementing several application layers, including Spring
autowiring, the Spring Portlet MVC presentation layer, a transactionalized service layer and
JPA/Hibernate-based data layer. The well-documented behavior of these tools and their adherence to &
implementation of public Java Specification Requests such as 250 and 330 (for annotations) and 286 (for
portal/portlet functions) will minimize the ramp-up time of future developers supporting PCMMR.

4.3.2. Standard Partner-System Implementation
As described in section 4.2.2, PCMMR will use the following values when serving as a partner
application to CISS:

• Local portlet application & Integration technique (WSRP, URL)

o PCMMR will serve as a local portlet to the main CISS portal, and thus will communicate
to and from the parent portal using WSRP 2.0. This includes WSRP eventing and
advanced WSRP features, as described below in the context-sharing section. The
WebLogic-proprietary “local proxy” flag will be enabled, removing the need for TCP
socket communication between the portal and local portlet.

• Throughput forecast for three-year period

o Throughput expectations for PCMMR are outlined in the PWS and other project
documentation found on the PCMMR SharePoint site. In general, PCMMR will respond
to all user-interface functions within a few seconds of their submission, and will be able
to serve 1000-2000 simultaneous user sessions. Longer running processes such as
reporting functionality or batch processes will be implemented in an asynchronous
manner separate from the main PCMMR application and will notify/“call back” the main
application & user when complete.

• Context sharing requirements

PCMMR
System Design Document 43 February 2014

o PCMMR not only functions as a portlet application for the main CISS site, but also uses
WSRP eventing to synchronize context data to and from the main CISS site. This context
data includes (but is not limited to) items like the logged-in user profile, roles and
permissions, currently selected duty station and currently selected patient8.

• Application exposure

o The PCMMR application inherits the granular authentication and authorization
functionality provided by CISS. Although any VA user may log into the CISS parent
portal, each user must be explicitly assigned a role which itself is granted the permission
to access PCMMR. Furthermore, all PCMMR functions have associated permissions
which must be assigned to the user’s role in order for the user to be able to activate that
portion of the application.

o PCMMR created a separate user editor administration portlet to manage its local set of
database users and their roles in the system. This editor will synchronize the roles
assigned to users with the VA LDAP server. PCMMR will not interface with Identity and
Access Management (IAM) for system user management, but will rely on CISS for
authentication / authorization until a longer-term SSO solution is provided by VA.

• Data storage location

o PCMMR shares a common single database with CISS. This provides the ability to have
PCMMR tables directly reference other CISS tables (and also third-party tables such as
the SDS or STS data sets), providing a foreign key constraint guarantee to that data.

• Multiple authentication reduction

o PCMMR does not currently need authorization or authentication for any of its functions
outside of that provided by the main CISS portal. The logged-in user context is shared by
PCMMR and other partner applications as described above. If future connections need to
be established to other enterprise systems which have additional authentication
requirements (such as Vista, which uses access/verify codes), it will be implemented
separately by PCMMR.

• COOP strategy (to include WAN failure)

o PCMMR depends completely on the CISS portal to provide an interface to the user. If the
CISS portal system is stopped or becomes inaccessible, all PCMMR functionality will be
unavailable. CISS is implemented in production using a distributed and clustered
approach and also has a fully implemented disaster recovery (DR) plan in case of a long-
term outage. Final production installation of PCMMR will include the same guarantees
such that its content will be replicated and provided in case of any singular server failure.

PCMMR uses a variety of enterprise tools. While the code is primarily written in Java, other tools are also
used: JSP / JSTL, JPQL, HTML, Javascript, and XML. It is closely aligned to the Spring framework for
dependency injection / autowiring, transaction support and abstractions on top of a variety of other tools,
including the JSR286 portlet standard.

8 Future functionality

PCMMR
System Design Document 44 February 2014

The code is organized into four main sections:

• Model – Contains the business model classes in the application representing the various domain
entities in PCMMR. This layer is simple and makes use of a hierarchy of persistence superclasses
that ensure all persistent objects share a common set of traits. These traits include, but are not
limited to:

o A unique integer ID number, used in the database as the primary key

o A version number used by the Persistence layer tool to ensure updates occur serially and
don’t collide with one another

o A set of audit columns, capturing the creator, date/time and timezone for the object

o A set of audit columns capturing the most recent updater, date/time and timezone of the
object

The model classes primarily contain simple functionality and references to one another for small
helper methods.

• Persistence – Contains the data access classes which abstract storage, update and retrieval of
objects in various data stores. These stores can include the primary database, LDAP, web
services, JMS servers and other repositories of data inside and outside of the application. The
data-access-object (DAO) pattern is used heavily as well as a set of superclasses which integrate
with the JPA standard to provide database persistence. The data-transfer-object pattern is
discouraged and not used by PCMMR; instead, the domain objects themselves are directly
persisted to the data stores.

To implement a new DAO, it’s best to copy both an existing DAO interface class (located in the
gov.va.med.pcmm.persistence.dao package) and that DAO’s implementation class (located in the
gov.va.med.pcmm.persistence.impl package). Because of the @Controller annotation, Spring will
automatically discover your new DAO and inject it anywhere else it’s needed; it’s a good idea to
add it to the common set in both AbstractPCMMController and AbstractPCMMServiceImpl.
Generally all DAOs are descendants of GenericHibernateDaoImpl, which provides all the
common functionality: finding by primary key, saving, deleting, and the ability to run arbitrary
JPA queries. If the DAO is for a class that implements Comparable, then you should instead
extend GenericHibernateSortedDAOImpl, which provides method that return SortedSets in
addition to Lists. Finally, if your DAO is for a lookup class (mapped to one of the
pcmm.pcm_std_* tables), your DAO should extend GenericHibernateLookupDAOImpl which
adds methods to retrieve the lookups by code or name.

• Service – Contains classes which implement the business logic and validations required for the
operation of PCMMR. All classes in this layer are automatically transactionalized by Spring (a
VA-approved framework – see TRM section 1.7.1) using aspect-oriented programming (AOP)
techniques. All methods are implemented as an atomic unit of work and must either complete or
fail as a whole. This ensures the database is always kept in a predictable, consistent state.

Like the other layers of the application, a helpful set of superclasses provides this transaction
configuration automatically, as well as provides many other resources that may be helpful (e.g.
instances of the DAO classes). To implement a new Service class, it’s best to copy an existing
Service interface (located in the gov.va.med.pcmm.service class) and that Service’s
implementation class (located in the gov.va.med.pcmm.service.impl package). Because of the
@Service stereotype annotation, Spring will automatically discover your new Service and inject it

PCMMR
System Design Document 45 February 2014

anywhere else it’s needed; it’s a good idea to add it to the common set of Services in
AbstractPCMMController.Generally, all services are descendants of AbstractPCMMServiceImpl,
which provides access to all DAOs, links to a few CISS services and the shared configuration for
transactions and transaction rollbacks.

• Web – Contains classes that primarily utilize the Spring lightweight Model-View-Controller
pattern (with a preference given to annotations over a separate XML configuration). This pattern
defines:

o Controller classes – The function of these classes is to handle all logic surrounding the
interation with requests coming in from users via their web browsers. Saving items to/from
the various JEE contexts (Session, Application, Request), providing reference data and
managing request parameters are all handled by the controller classes. The controllers
generally will construct a Model, which consists of both reference data and also a Command
object (defined below) and send the model to a View (also defined below) for rendering.

o Command objects – These are often simple Plain-Old-Java-Objects (POJOs) that are bound
via Spring automatically to form input values in the web browsers. As users submit forms or
generate requests, the values associated with those requests are stored temporarily into a
Command object instance so that Spring can manage the set of values as a unit and associate
errors, if needed, to specific values. The command classes are accessible from all controller
methods, and often the controllers have logic which manipulates those values as the
conversation with the user occurs.

o Views – Once the controllers have built the Model, they forward the request to a View.
Spring contains an abstraction for a variety of View tools and technologies; PCMMR uses
the standard JSTL view, which allows for the model to be rendered in a standard JSP page
using JSTL tags and the JSP Expression Language (EL). These JSP views also contain
Javascript which runs on the client side in the web browser.

Additionally, a fifth package “Util” is for static utility classes whose job is just to provide helper
methods to the main four sections above.

4.3.3. AJAX
The PCMMR team has implemented AJAX communication between the user web browser session
and the PCMMR server application, in addition to the normal Web layer above. Following Spring’s
conventions and the JSR-286 Resource Request pattern for implementing AJAX requests, Javascript
in the client-side web browser can send asynchronous XML requests directly into the Spring
controllers described above, and those controllers can respond with data values serialized into JSON
format. All of this happens transparently to the developer, and a variety of abstractions are put in
place such that the developer can annotate which methods are AJAX methods and which are normal
Spring MVC-style methods. Spring uses the Jackson JSON encoding tool to serialize the annotated
domain objects into JSON before sending back to the web browser.

4.4. Communications Architecture
The following items represent the different communication paths of PCMMR:

• CISS Portal Server -> PCMMR Portlet (WSRP) – Although PCMMR has the functionality
and look-and-feel of a complete standalone application, it technically still functions as a portlet,
which by definition is but a single contributor among many when rendering the final content for

PCMMR
System Design Document 46 February 2014

the end user. The CISS framework therefore needs to request content from the PCMMR portlet
application, and send incoming user parameter and form submissions to the PCMMR portlet. This
is done over WSRP-encoded HTTP via a proprietary WebLogic-hosted local proxy connection
between the CISS portal application and the PCMMR portlet (running on the same machine and
inside the same WebLogic domain).

• Attended Server -> JMS -> Unattended server – This is a common path originally
implemented by the CISS framework and reused by the PCMMR application to support
asynchronous request handling. These async requests include both report requests and batch
processes which are generally long-running processes.

The Attended server and Unattended servers are both identical instances of the same PCMMR
application, but configured via properties slightly differently. Users interact with the attended
server via their web browser, and the attended server sends requests to, and relies upon, the
Unattended server to process long-running tasks. The means of communication is provided by a
JMS queue (hosted by the parent WebLogic application server), and messages that are added to
this queue automatically activate a message-driven bean (MDB) on the Unattended server side.
The JMS queues are distributed Store-And-Forward queues as provided by WebLogic.

• Web Services – PCMMR will support exposing a variety of its service-layer methods via web
services such that legacy systems can retrieve information about patient teams, staff member
assignments, etc.

• HL7 message stream from MVI – PCMMR will support processing of incoming messages from
the Master Veteran Index (MVI). These messages contain notifications of patient identity trait
updates, merges and splits across different patients. As the PCMMR local data is updated based
on each message, an acknowledgement will be sent back notifying MVI that PCMMR was
updated.

PCMMR also sends HL7v3 (SOAP webservice) requests to MVI for access to the patient primary
view and to initially register PCMMR as a consumer of future primary view change messages
(HL7v2).

5. Data Design
The data for PCMMR is stored exclusively in a dedicated schema inside the existing shared CISS SQL
Server database. The login to this database by the PCMMR application provides the PCMMR code the
ability to reference not only the PCMMR schema tables, but also the shared CISS tables, as well as other
reference data stored in the CISS database, such as SDS data and STS.

The latest schema for the database is stored in the following PDF:

PCMM Schema

PCMMR
System Design Document 47 February 2014

5.1. Database Management System Files
The database is designed as a set of normalized tables, which are closely related to (but may not match
exactly) the business domain objects defined by the Java code. These tables can be logically split into two
sets:

• Reference / “Lookup” data – This data exists mostly as a set of standalone reference information
which is used by other objects in the system for configuration and as attributes. For example, the
fact that some objects are considered “Active” and others “Inactive” is implemented in the
database by those objects referencing a lookup table called “STATUS”, which contains one row
for active and another for inactive. Some of these reference tables may be updated by the
administrative users of PCMMR during the application runtime, but these updates will occur
much less frequently than updates to the primary data objects defined below.

An example of reference table usage is:

As shown, the two tables on the right are lookup tables containing the subspecialties and
categories for Non-VA providers. The primary table on the left has a foreign key relationship to
specific rows in each lookup table. Notice that the lookup table columns are identical; this
consistency is shared by all lookup tables in the PCMMR schema.

Code Unique code for this lookup value among the
other set of lookup values in this table (but not

PCMMR
System Design Document 48 February 2014

across tables). This is generally either a number
or an all-caps value separated with underscores.
No spaces are allowed.

Name Short description of value. If a sort order is not
defined (null), then the lookup values are sorted
by this column by default.

Description Longer explanation of value

Sort Order Integer sort order; if non-null, these values
override the default alphabetical sort order by
Name

Effective Date The activation date for this value

Expiration Date The inactivation date for this value

• Primary Objects – This data represents the main fundamental domain objects used by PCMMR to
contain the main business data. An example of a primary object is the Team object, containing a
set of attributes for itself (such as the Team Role, the description and capacity count) as well as
links to other primary objects (such as Staff Member Assignments).

An example of a primary object is the PCMM.NON_VA_PROVIDER table in the above
diagram. A subset of the columns listed are:

NON_VA_PROVIDER_ID Primary key unique integer identifier.
The naming convention for all primary
key columns is the name of the table,
followed by “_ID”.

PCM_STD_NONVA_PROVIDER_CATEGORY_ID A foreign key into the category lookup
table describved above. Foreign key
naming conventions are to have the
foreign key column named the same as
the primary key in the foreign table being
referenced.

FIRST_NAME A normal data column containing an
attribute of the object being represented.

RECORD_CREATED_BY /
RECORD_CREATED_DATE

The system user who initially created this
record, and the time of creation. These
values don’t change as the record is
updated.

RECORD_MODIFIED_BY / The system user who has most recently
updated the row, and the date of the most

PCMMR
System Design Document 49 February 2014

RECORD_MODIFIED_DATE recent update.

RECORD_MODIFIED_COUNT This is an integer representing the
version of this row in the database. As
the row is updated, this number is
incremented by 1, which prevents two
users from updating the same row twice
at the same time.

An analysis was done by the development team to determine which reference data items would be
feasible to update and what the implications might be for the system; see the following embedded
document for that analysis:

Reference Data
Analysis

The access methods to the database from the PCMMR application is JDBC.

Some features of the SQL Server database are discouraged by the VA customer, including stored
procedures. These items are implemented explicitly in the service layer Java code of the PCMMR
application.

The scope of the number of transactions and concurrent users of the database is proportional to both the
number of users concurrently using PCMMR as well as the number of incoming requests from external
systems - CPRS popup window views, MVI patient updates, background batch job executions, etc. The
PCMMR application implements several strategies for in-memory caching to reduce the load on the
database. Certain lookup values are annotated as “eternal” caching, meaning they are permanently stored
in memory and only retrieved once upon application startup.

5.1.1. JPA mapping example
In order to link a business domain object in PCMMR to a database table, the object relational mapping
(ORM) settings must be updated. These settings describe how to map the Java fields and relationships
(object graph) to the relational set of tables in the database. The VA-approved J2EE standard for this
mapping is using the Java Persistence Architecture (JPA) standard. Although there is more than one way
to configure JPA, the PCMMR standard is to use annotations within each Java class. The advantage of
this is to keep the definition of each field and its configuration nearby, so that developers don’t need to
track down a separate configuration file.The following example shows how to map a Java object to a
table:

@Entity
@Table(name = "MODEL_TEAM_POSITION", schema = "PCMM")
@AttributeOverrides({ @AttributeOverride(name = "id", column = @Column(name =
"MODEL_TEAM_POSITION_ID")) })
public class ModelTeamPosition extends
 AbstractPCMMPersistentWithVersion<ModelTeamPosition> {

 // --------------------------------- Fields

 private TeamRole teamRole;

PCMMR
System Design Document 50 February 2014

 private boolean required;

 private ModelTeam modelTeam;

 // --------------------------------- Common Methods

 @Override
 public int compareTo(ModelTeamPosition u) {
 if (equals(u))
 return 0;

 return new CompareToBuilder().append(getTeamRole(), u.getTeamRole())
 .toComparison() > 0 ? 1 : -1;
 }

 @Override
 protected boolean requiredEquals(ModelTeamPosition u) {
 return new EqualsBuilder().append(getTeamRole(), u.getTeamRole())
 .isEquals();
 }

 @Override
 protected int requiredHashCode() {
 return new HashCodeBuilder().append(getTeamRole()).toHashCode();
 }

 // --------------------------------- Accessor Methods

 @Type(type = "yes_no")
 @Column(name = "REQUIRED_IND")
 public boolean isRequired() {
 return required;
 }

 public void setRequired(boolean required) {
 this.required = required;
 }

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "PCM_STD_TEAM_ROLE_ID")
 public TeamRole getTeamRole() {
 return teamRole;

 }

…

The items of interest above are:

Item Description Notes
@Entity annotation Defines this object as a

persistent Entity, per
JPA standard

Superclasses to this class
must be marked as
@MappedSuperclass if those
classes also have persistent
fields which are inherited by
this class

@Table Defines the table used

PCMMR
System Design Document 51 February 2014

to contain instances of
this object

@AttributeOverrides A collection of
overrides to superclass
persistent definitions

For PCMMR, this is
generally used to override
the default “id” column to
reflect the name of the
table’s primary key column.

extends

 AbstractPCMMPersistentWithVersion

Ancestor of all
persistent PCMMR
classes

There is a hierarchy of
superclasses which all
persistent classes can inherit
from, depending on the
function of the PCMMR
class

@Override
 protected boolean requiredEquals
/ @Override
 protected int requiredHashCode

Required
implementation of
equals and hashCode

JPA requires that classes
implement equals and
hashcode consistently (using
the same set of fields and in
the same order) using
“business key equality”,
meaning fields other than the
ID are used for comparison.
Some common functionality
for these methods is
implemented in the parent
AbstractPCMMRPersistent.

@Type(type = "yes_no") Type specifier for a
particular field

JPA/Hibernate specifies
particular data types for each
field; if not specified, the
String is the default type

@Column(name = "REQUIRED_IND")

Column specifier for a
particular field

Attached to the getter
method, along with @Type,
this defines the name of the
column, it’s nullability and
several other attributes.

6. Detailed Design
6.1. Software Detailed Design

6.1.1. Module “CRUD editors”
To implement a CRUD editor for a simple object in PCMMR, the following components must be
developed:

• Domain objects representing the main object, its attributes, and any children objects it
references. These objects will extend the appropriate parent class which provides a common set
of persistence attributes and enforces some necessary methods to be implemented (such as
requiredEquals() and requiredHashCode() for Hibernate purposes). Within these objects,

PCMMR
System Design Document 52 February 2014

annotations need to be added which define the database table and columns that link to each of the
object’s fields, as defined by the JPA 2.0 standard. Additionally, annotations can be added to the
fields which support simple JSR-303 validations on the fields (such as size or length restrictions,
minimum or maximum values, and some formats like email addresses). Finally, serialization
annotations can be added which define the set of fields that are serialized automatically by the
Spring / Jackson subsystem when sending this object to the client web browser via AJAX.

• Database tables that contain all columns and foreign relationships necessary to persist the
domain objects

• Persistence layer classes (DAOs) which provide CRUD methods for the new object being saved
to or retrieved from the database. A common set of DAO superclasses exist which should be
extended to provide almost all basic CRUD functionality using the JPA 2.0 techniques. A specific
superclass exists for Lookup classes which share a common set of fields (such as name,
description and sort order). Finally, a custom superclass exists for all domain objects
implementing the Java Comparable interface, such that they can be returned as a SortedSet
automatically.

• Service-layer transactional classes that define the main functions (save, update, delete) and also
perform business-level validations for the persistence or modification of the domain objects.
These methods represent the main application logic, and should not depend on any web-layer
classes. By extending a common service parent class, they automatically inherit all DAOs for
access to the database, as well as the @Transactional attribute provided by Spring which
automatically creates new database transactions before the method begins, and closes (or rolls
back) the database transaction after the method exits. It’s good practice to perform some common
validation of the input parameters inside the method, and to throw a ServiceValidationException
(a custom PCMMR type) if any business logic validations fail. Finally, these methods should be
restricted to users with certain permissions, via the @PreAuthorize Spring Security annotation.

• Web-layer model-view-controller classes which manage the user interaction with forms that
display and save the object. As described elsewhere, these classes consist of one or more
Controller classes (annotated with @Controller), one or more “command” classes which are
simple POJOs which map directly to form input fields, and JSP files containing markup and JSTL
tags which render the HTML forms and perform client-side processing and validation.
Additionally, the JSP files make extensive use of the jQuery Javascript framework for
standardization and simplification on the client side.

6.1.1.1. Processing
The flow for a user session and the respective events in the CRUD editor code is:

User Action PCMMR processing events

User clicks View object
link, which was
generated on the server
side via the Portlet 2.0
standard. Embedded in
the link is the ID of the

• PCMMR inspects URL and based on the @RequestMapping annotations in
the @Controller classes, decides which method to activate.

• PCMMR activates the “view [object]” controller method, injecting all
parameters as required, and expecting a model and view to be returned.
Often the developer will create a Command object and save it in the model
which backs the form shown to the user. This command object is also

PCMMR
System Design Document 53 February 2014

object requested. specifically bound to (and retrieved later from) the portlet session, such
that when the user submits the form, the values remain available in the
event of a validation error.

• The view returned maps to a specific Tiles definition; Spring delegates
rendering of the view to the Tiles subsystem

• Tiles assembles all JSP files as configured in pcmm-tiles.xml and generates
the final markup. The JSP files used can contain JSTL tags, custom
PCMMR tags, Spring security tags and Tiles tags. Final markup is sent
back to the user for display. This happens during the Portlet “Render”
phase – see the portlet specification for details.

User makes changes to
some form input values
and clicks “Submit”.

• Spring inspects the URL and parameters being submitted and activates the
“save [object]” controller method. This method is activated during the
Portlet’s “Action” phase (although that may not be immediately obvious
based on the method annotations – see the portlet specification for details).
If a command object was annotated such that it is saved in the user’s web
session, it is retrieved from the session and all the submitted form values
are automatically bound to the command object’s fields.

• The controller method then performs some simple validations (or delegates
these checks to a separate Validator class), then calls the service method
whose job it is to save or update the object in the database. The service
method then performs its business-level validations and logic, calling the
persistence-layer DAO class if everything checked out, and the object is
saved to the DB.

• Once the service method returns with the new (or updated) persistent
object, it sets the appropriate render parameter such that Spring will
activate the correct success page during the upcoming render phase.

• If any errors occurred in the service method, the transaction is rolled back,
the database is left unmodified and the user is often returned to the same
form page so he/she can deal with the validation errors.

Obviously the detailed behavior for any particular object has additional customizations, but the general
workflow above is shared by all CRUD editors. A solid understanding of the complete PCMMR tool
stack (namely the Spring Framework, JPA/Hibernate, JSPs) is needed to implement a fully-functioning
CRUD editor.

6.1.2. Module “Search Screens”
To implement a standard (non-popup) search screen in PCMMR, the following components must be
developed:

• Domain objects – generally these will already have been developed in preparation for the CRUD
screens above. If not, consider making the CRUD screens first since these will usually help
finalize the object attributes, and the search criteria used in the search screens will be some subset
of those attributes.

PCMMR
System Design Document 54 February 2014

• Database tables containing the domain objects will generally also have been developed during
the CRUD editor phase; if not, the domain objects, JPA mappings and database tables are
required before search screens can be developed.

• Persistence layer classes (DAOs) which provide search methods for the new object. The
recommended approach is to have a single method called findByCriteria() which accepts several
nullable parameters representing various ways of restricting the final result list. For all non-null
parameters, a JPA query is built with the applicable restrictions and a result set is returned. In the
event that the object implements Comparable, the developer might choose to return a SortedSet as
compared to a simple List, for convenience.

It is considered an antipattern to have any “built-in” restrictions in the JPA query, even if these
seem common-sense, since they introduce implied dependencies in the code. For instance,
restricting the set of objects returned to those within the user’s duty station is discouraged;
instead, a parameter specifying the station ID (or set of applicable station IDs) should be provided
by the caller.

Another pitfall to avoid is joining children objects from the main object if they are not really
needed, given the set of non-null parameters. These can slow down the query since they create
unnecessary joins at the database level. Be sure to only join those children objects or external
referenced objects when absolutely necessary.

• Service-layer transactional classes are generally not needed since the web layer simply calls the
DAO methods directly for the list of matching objects.

• Web-layer model-view-controller classes are used to model the search criteria and contain the
List (or SortedSet) of matching results from the database. These classes call the DAO
findByCriteria method and display the results in a standardized markup table format.

6.1.2.1. Processing
The flow for a user session and the respective events in the search screen code is:

User Action PCMMR processing events

User clicks Search for Object link,
which was generated on the server
side via the Portlet 2.0 standard.
Any necessary parameters further
defining the search should be passed
to the render method.

• The same Spring workflow events occur as in the CRUD editor
display screen section above. What changes for the PCMMR
search screens is that the command object instead contains a
separate field for each search field, and a List (or SortedSet –
developer choice) of search results, which is initially empty.

User makes changes to some form
search values and clicks “Submit”.

• The same spring workflow events occur as in the form
submission section of the CRUD editor description above.
Spring binds the search parameters to the command object, and
in the action handler method (analogous to the POST method in
the Servlet world), the controller calls the findByCriteria DAO
method and sets the list of results in the command object.

• The JSP can check the size of the result list and, if non-empty,
display all search results in a standardized table below the

PCMMR
System Design Document 55 February 2014

search fields.

6.1.3. Module “AJAX methods & Dialogs”
AJAX stands for Asynchronous Javascript and XML, and represents a way for applications to exchange
data asynchronously with the server (that is, outside of the standard browser request/response processes).
Implementing AJAX functionality in PCMMR is straightforward, due to the Spring Framework’s flexible
implementation of this protocol. To call a server method and process its response, the following
components must be developed:

• Server Side – In any controller class, implementing a method that is activated for some AJAX
request is simple. Observe the following method signature:

@ResourceMapping("find-rooms")
@PreAuthorize("hasRole('" + CISSPermissionType.READ_TEAM + "')")

 public @ResponseBody List<Room> findRooms(
 @RequestParam String number,
 @RequestParam(required = false) String onlyActive,

ResourceRequest request, ResourceResponse response)

Note that the ResourceMapping annotation defined a unique string, just like all other controller
methods. Also these methods share common authorization annotation @PreAuthorize with other
controller methods. The change is the @ResponseBody annotation, which notifies Spring that the
method will be generating the body of the response directly, and that Spring should not attempt to
delegate rendering to a View. The method can accept any @RequestParam-annotated parameters
and can return any JSON-serializable Object (POJOs, Collections, etc) or primitive9.

In coordination with the Portlet 2.0 standard, Spring processes AJAX requests via the
ResourceRequest portlet subprocess, which is why the developer can optionally include the
ResourceRequest and/or ResourceResponse objects in the method signature.

• Client Side – Generally in AJAX-powered applications, a Javascript framework is used to
simplify submission of Asynchronous XML messages to the server and process the results
returned. PCMMR is no different and relies extensively on the jQuery open source Javascript
framework. Observe the following snippet:

<portlet:resourceURL var="getMultiPCPURL" id="get-multipcp" />

…

function AJAXExample(objectId, theCallback) {
 $.AJAX({
 url : '${getMultiPCPURL}',
 dataType : 'json',
 data: {
 multiPCPId: objectId
 },

9 With some restrictions - see the Spring/Jackson JSON integration documentation for details

PCMMR
System Design Document 56 February 2014

 success : function(response) {
 var r = response.AJAXResult
 theCallback(r.multiPCP)
 }
 }).error(function(e) {
 alert("Couldn't get the MultiPCP object: " + e)
 })

}

This Javascript method shows a simple way to submit an AJAX request to the server and
asynchronously process the results. The URL is generated at the top of the JSP and contains the
same Spring “get-multipcp” as what’s defined in the Controller @RequestMapping. In the
Javascript function, we call @.AJAX jQuery method, which activates the process described
below.

6.1.3.1. Processing
The flow for a user session and the respective events in the search screen code is:

User Action PCMMR processing events

Some client-side event
triggers the method
above – for example, it
could be clicking a
button, expanding a
show/hide table, or
any Javascript that
needs to communicate
to the server.

• The Javascript method uses jQuery’s .AJAX() method, which constructs an
asynchronous XML (POST) request behind the scenes and includes all the
parameters defined in the data { …} section. The controller method on the
server is activated (which may be short or long running). The expected
response format (“JSON”) is automatically sent by the web browser to the
server, which notifies Spring to automatically encode any results from the
controller method as JSON via the Jackson tool. Meanwhile, since AJAX is
asynchronous, the Javascript method proceeds as usual on the client (in this
case, exiting the method).

• On the server, once the controller method has completed its execution and
returned an Object, Spring encodes it into JSON and sends the result back to
the browser to be converted into a Javascript object graph. Note that all
referenced objects (and their referenced objects, etc) are converted to JSON
and included, via a configurable set of translation annotations.10 Be careful
not to have any circular references, or Spring will loop back and forth
attempting to encude the relationship and eventually fall into a
StackOverflow situation.

• Once Spring sends the response back to the client, either the success() or
error() method is activated based on the server result. If successful, the
response.AJAXResult field will have been populated with the result of the
controller method (and its related objects). If a failure, the error method will

10 Examples are @JsonProperty and @JsonAutoDetect; for more information,, refer to the Jackson API

PCMMR
System Design Document 57 February 2014

have been called and more information is available via the first JavaScript
method parameter.

6.1.4. Reporting
PCMMR uses SQL Server Reporting Services (SSRS) to implement both canned and ad-hoc reports.
When the menu option is clicked, SSRS browser interface is opened in a new browser window above
PCMMR. The VA active directory credentials used in Windows and by CISS are intended to be reused
transparently by SSRS, to display reports available to the user and restrict stations and other data elements
for that user. SSRS can export reports in a variety of formats (PDF, Excel, CSV, etc).

6.2. Batch Processes
There are three types of batch processes which are managed by Spring Batch framework and execute
operations over a large number of patients. Spring Batch provides a level of resiliency toward server
crashes and exeptions, since it maintains a stateful context via its own database tables and thus can
resume operations after being interrupted. For smaller sets of data, simple loops can be used in the code
and a single transaction used since locking is less of an issue.

Spring Batch defines Jobs, each of which has multiple Tasklets which are executed in the order defined.
PCMMR currently implements custom tasklets for each job, although Spring Batch supports simpler
configurations. These jobs and tasklets are all configured in pcmm-batchProcesses.xml.

Cleanup Binary Objects Tasklet – Because Spring Batch operates over several container-managed
iterations, it is not feasible to run the whole process within a single transaction. Additionally, Spring
Batch supports primitive data types to be stored in a shared context across multiple iterations, but
complex data types / Serializable data is not supported. Thus, PCMMR allows for a map of more complex
data to be persisted in the database for the duration of the Spring Batch execution, and retrieved via a
common key. The purpose of this tasklet is simply to delete any potential persistent data after the job
completes

6.2.1. Transfer Patients to Entire Team
This batch process has five tasklet steps:

• Perform Patient Transfer – This is the tasklet which activates the shared
HandleBatchOperationsRequestTasklet to perform the patient moves. Each patient is
executed over a single iteration of the tasklet and a shared context is built during each
iteration to maintain state and determine which patient to handle next. Each patient
transfer (tasklet activation) makes a single transactional service call, so if one patient’s
execution fails, the error is captured but the overall process allowed to continue.

• Unassign Staff Members – Once the patients have all been transferred to the parent team,
and only if all patient transfers executed correctly, staff members for the specified
position are unassigned (both for the current time and any future assignments). As each
staff member is modified, a background job log entry is created for reporting.

PCMMR
System Design Document 58 February 2014

• InactivateOrDeletePositionAfterPatientTransfer – If the previous two tasklets completed
successfully and all patients and staff were updated successfully, the position itself is
inactivated or deleted based on the overall job request parameters. As above, background
job log entries are created to detail what happened.

• Create Patient Transfer Job Completion Alert – Alerts are created in this tasklet which
summarize the job execution results; if no errors occurred, only one alert is created,
otherwise separate alerts are created based on the AlertTemplate rules defined in the
database.

• Cleanup Binary Objects Tasklet– See description for this tasklet above.

6.2.2. Patient Bulk Operations
This batch process is similar to the one above but only includes three steps:

• Perform Batch Operation – Based on the parameters specified, this tasklet performs one
of the following behaviors:

• Create Job Completion Alert – As implied, this tasklet creates alerts based on the
successful or unsuccessful results of the batch operation tasklet above.

• Cleanup Binary Objects Tasklet – See description for this tasklet above.
As in other batch operation jobs, a background job log is created detailing the actions for each patient
modified and the overall success or failure of the job.

6.2.3. Cluster Considerations
PCMMR consists of multiple unattended servers, each of which has the capability of executing batch
processes. A batch process execution is managed only by one unattended server until it completes. To
activate any of these batch processes, a JMS message is sent to the Batch Process Queue (defined by the
jms.batchProcess.queueName property in pcmm.properties), which activates the handleMessage method
in the BatchProcessListener message-driven POJO. Because PCMMR uses distributed queues in a
clustered environment, the application server container should evenly distribute requests for these batch
processes across each unattended server’s JMS queues, such that load is balanced. If an unattended server

Process Activated From
Bulk Assign – Assigns many patients to
a team or position

• Historical Patient Assignment Listing
• Patient Search Results

Bulk Unassign – Unassigns many
patients from a team and/or position

• Patient Assignment Listing
• Patient Position Assignment Listing

Bulk Team Move – Moves many
patients across teams

• Patient Assignment Listing
• Patient Position Assignment Listing

Bulk Position Move – Moves many
patient assignments from one explicit
position within a team to another
explicit position in the same team

• Patient Assignment Listing
• Patient Position Assignment Listing

PCMMR
System Design Document 59 February 2014

crashes, it should be able to reactivate any partially-completed spring batch processes after it restarts (or
potentially another unattended server can resume where the first left off).

6.3. Scheduled Jobs
PCMMR has many scheduled jobs defined which execute only on the unattended servers. Their schedules
are configurable via pcmm.properties entries, either using cron triggers or fixed time delays between the
stopping time of one execution and starting time of the next. These are all defined via the Spring
@Scheduled annotation and by convention the scheduled job class names all end with
*ScheduledJob.java.

Each unattended server executes every scheduled job using the same scheduling parameters (although
their start times may be slightly staggered), so care was taken using HazelCast locks and shared data to
ensure only one unattended server executes a job (or parts of a job) at a time.

6.3.1. MVIPatientInboundProcessorJob
This is a background job which periodically queries a HazelCast map containing MVI patient update
requests, and processes them in order for each patient. Messages are retained for a configurable amount of
time to ensure in-order processing, since the JMS transport mechanism doesn’t strictly guarantee FIFO
ordering. A separate MDB actually populates the HazelCast map when messages arrive in the JMS
queues (after being transformed by Mirth Connect from the original HL7 format). Four types of messages
are processed: ADTA24 (“patient unlink”), ADTA43 (“patient move”), ADTA31 (“patient primary view
updates”) and MFNM05 (“patient treating facility list update”). See section 7.2.2 for more details.

6.3.2. MVIPrimaryViewAndRegistrationScheduledJob
This is a background job which processes MVI registrations for any patient flagged in the PCMMR
database as needing such. It processes each patient in a separate thread, and registers interest for that
patient at all Vista sites where the patient is known to exist (via the treating facility list and existing
objects in our VistaPatient database table). It waits for all threads to complete before exiting.

In order for this job to run for a given Vista station, the process at that site must be enabled via the flag
stored in the PCMM_VISTA_INSTANCE table.

6.3.3. PurgeJobExecutionResultsJob
This is a simple background job which runs periodically and deletes any background job log entry older
than a configurable amount of time (via pcmm.properties).

6.3.4. TeamValidationJob
This is a background job which performs data validations for teams flagged in the PCMMR database as
needing such. It runs validations for each team in its own thread and stores the results in the database for
later retrieval. All validators are executed, using the “team” scope (so that the entire Team object graph is
validated, as opposed to the scope used when users perform actions on the front-end and we only are
interested in validating their specific data update). Each team’s validation occurs in a read-only
transaction, which ensures a consistent view of the team as per when the transaction started, but without
modifying the team so that users can continue to make data changes on the front-end UI without
encountering versioning problems. The validation process as a whole, and also the subsequent Vista

PCMMR
System Design Document 60 February 2014

synchronization process, are both designed to be “passive”, operating outside the normal JPA/Hibernate
versioning process to avoid OptimisticLockingExceptions and database-level locks. They also take
advantage of SQL Server’s “snapshot” isolation for read-only transactions –
see http://msdn.microsoft.com/en-us/library/tcbchxcb%28v=vs.110%29.aspx.

Each team’s validation is executed in a separate dedicated thread. The threadpool is managed by Spring’s
task executor abstraction, which is configured in the pcmm-scheduledTasks.xml file.

The complete process is outlined below:

batch process - runs on unattended servers - every 60 sec

select team_id, team_version from teams
where validation_needed = y order by record_modified_date

lock hazelcast on "Validation" + team_id;
if lock unavailable, assume other node is processing this team already
and move on to next team

begin DB transaction
get full team obj where team_id and team_version match

and validation_needed is Y
if none, assume someone else made changes in the meantime; exit

either a user, which would change the version, or
another unattended node which ran the validation process and
changed the validation_needed flag

run validations on team
if error

rowsUpdated = "update team set error = X, validation_Needed = N
where team_id = X and team_version = Y"

if no error
rowsUpdated = "update team set error = null, validation_Needed = N

where team_id = X and team_version = Y"
if rowsUpdated = 1

send JMS message to vista_sync queue containing team_id and team_version
if rowsUpdated = 0

validations are outdated since version must have changed; it will be
picked up by next process

unlock hazelcast

6.3.5. VistaCleanupJob
The VistaCleanup job is intended to remove any data inadvertently stored in Vista fileman files when an
error occurs during the Vista synchronization process. Since Vista is not a transactional resource, it’s
possible that PCMMR could have synchronized only half of some Team’s object graph out to Vista
before an error occurred on the PCMMR side that caused the process to fail. If the team is re-sync’ed
later, the graph will be completed and corrected normally. However, if the team is first deleted on the
PCMMR side, or the IEN of the newly-created Team object in Vista was never stored back in the
PCMMR database for tracking, the object in Vista will become a “zombie”. The purpose of this job is to
clean up such data elements.

This process was never fully built or enabled since no “team delete” function exists in PCMMR, and
during testing the IEN for new Vista objects were reliably set in the PCMMR database regardless of
errors occurring during synchronization. The skeleton code remains for this job in the event that it’s
needed at some point. The job’s logic would roughly be to search for all Vista Team objects in the 404.51

PCMMR
System Design Document 61 February 2014

file, and compare all IENs of those objects to all known Team IENs in the PCMMR database. Then it
would delete any outliers.

6.3.6. PatientAutoInactivationJob
The patient auto-inactivation is a multi-step process which runs periodically to update patient assignments
in PCMMR based on encounter data changes in Vista. It also retrieves events generated in Vista for when
the patient date-of-death field is flagged, or rescinded. In order for this job to run for a given Vista station,
the process at that site must be enabled via the flag stored in the PCMM_VISTA_INSTANCE table. A
separate “last job execution date” column is also stored in this table, which is used to ensure updates don’t
occur more frequently than expected due to the fact that PCMMR has multiple redundant unattended
servers all concurrently running these processes.

After the process runs, the PCMMR database is updated with the last execution time of this job. The next
time this batch process job executes, it will only query VistA for events which were created since the last
execution time. This field in the database can be manually overridden with an earlier historical date if for
some reason the job failed. It is safe to rerun this process for the same date range multiple times without
concern for creating data inconsistency.

“Process Encounters” subprocess detail
When this process runs, it queries all encounters created in each VistA since the last time the process ran.
If an encounter meets a set of criteria (based on the respective team’s care type, encounter stop codes,
primary vs. secondary provider status, etc.), it serves to “flip” pending primary care encounters to
“active” and update the first & last encounter dates for each patient assignment as necessary. It also
triggers the same set of automatic events (multiPCP modifications, etc) used elsewhere in the system
when the patient assignment goes active.

After processing encounters, the subprocess performs two other steps:

 Flag Stale Primary Care Patient Assignments
This step searches for primary care patient assignments in PCMMR which have exceeded a time
limit without a qualifying encounter being reported in Vista, and flags the assignment for auto-
inactivation after another X days have elapsed. The purpose is to automatically remove patients
from PACT teams where they are not seeing any teamlet member at least every N months. The
values used are configurable via the pcmm.properties file. This action also triggers alerts when a
patient is flagged.

 Inactivate Expired Primary Care Patient Assignments
This step searches for primary care patient assignments in PCMMR whose “dates flagged for
inactivation” have expired – that is, they are on or before the current date. It unassigns the patient
from the team and creates alerts as required.

As the patient auto-inactivation process runs, a new background job log is created showing each
individual action that occurred. These jobs are available via the View Background Job Log menu item for
the configurable amount of time they are retained on the system.

PCMMR
System Design Document 62 February 2014

The set of data updates for any given Vista station are executed in a separate dedicated thread. The
threadpool is managed by Spring’s task executor abstraction, which is configured in the pcmm-
scheduledTasks.xml file.

6.3.7. CPRS Header Sync Job
This background job calculates and writes new primary care assignment information for each patient to
his/her respective “Outpatient Profile” (OP) entry in the Vista sites where he/she is known. The value
stored in the OP is retrieved by CPRS and displayed directly in line 1 of the header box of the CPRS
patient cover page. In order for a patient’s data to be updated, the CPRS header sync process at that site
must be enabled via the flag stored in the PCMM_VISTA_INSTANCE table. A separate “last job
execution date” column is also stored in this table, which is used to ensure updates don’t occur more
frequently than expected due to the fact that PCMMR has multiple redundant unattended servers all
concurrently running these processes.

When data changes are made in PCMMR, VistaPatients are flagged as needing new CPRS header
information calculated. The lines for each patient may or may not change; if it is recalculated but the new
value isn’t different than the old value, no Vista operation is performed. The latest cached value for each
Patient for a Vista site is stored in the VistaPatient PCMMR database table.

Updates to all VistaPatients for any given Patient are executed in a separate dedicated thread. The
threadpool is managed by Spring’s task executor abstraction, which is configured in the pcmm-
scheduledTasks.xml file.

Pseudocode for the CPRS header sync job logic:

request update logic:
 set cprs_headerRefreshNeeded = true, version = version + 1

batch process logic- every N minutes:

open read-only transaction
get all {patient, VistaPatient + version} tuples needing a refresh

(skip any vistaPatients whose cprsHeaderLastSynchronizedDate is > (N-1) minutes
ago - some other node recently updated it)
(skip any vistaPatients whose CPRS header sync process for their respective
station is turned off)

group by patient
for each patient:

attempt lock on patient ID (to prevent concurrent update on another unattended
node)

 if lock fails, continue to next patient

 for each VistaPatient in Patient
 calculate new header text
 if different than current header text
 add {VistaPatient, new header text} to var "updatesMap"
 unlock patient ID
close transaction

for all the updates in updatesMap
start async:
 lock on patient assignment ID
 open read/write transaction
 update header text only if version still matches

PCMMR
System Design Document 63 February 2014

 if rows updated = 1
 write header out to Vista and commit transaction
 else rollback transaction (version was incremented; someone else updated it,
wait for next batch)
 release lock

6.3.8. CPRS Header Sync Monitor Job
CPRS shows the PACT assignment information for a patient in line 1 of the CPRS header box on the
patient cover page. This information includes the name of the provider and associate provider. The
provider (staff) information may change automatically in PCMMR via a background scheduled job; there
is no user-driven event that we can use to capture when a staff member’s name changes. Therefore
PCMMR uses this Header Sync Monitor Job to query for any changes to staff member information in the
PCMMR database and request a new CPRS header synchronization for all patients showing that staff
member information in their current header.

The parameter used to signify when this process was last executed is stored in table called
PCMM_JOB_EXECUTION_METADATA.

6.3.9. Staff Update Job
The staff update job runs periodically to update staff information in the PCMMR database with the staff
information (on the “new person” file 200) in each Vista station. In order for staff data to be updated, the
Staff Update process at that site must be enabled via the flag stored in the PCMM_VISTA_INSTANCE
table. A separate “last job execution date” column is also stored in this table, which is used to ensure
updates don’t occur more frequently than expected due to the fact that PCMMR has multiple redundant
unattended servers all concurrently running these processes.

A separate dedicated thread is allocated for each Vista station’s data updates. The threadpool is managed
by Spring’s task executor abstraction, which is configured in the pcmm-scheduledTasks.xml file.

The logic for this job is to query for ALL staff members at a site, and iterate over them to see if they exist
in the PCMMR database. If they do, compare all fields to determine if any updates need to be made and
update the DB if needed. After information for a staff member has been updated, a background job log
entry is created.

Additionally, if the staff member’s person class changed or expired since the last time they were updated,
PCMMR sends out alerts to the PCMM Coordinator requesting they manually unassign the staff member
from their respective teams (as displayed in a table on the Staff member profile page). If the staff
member’s termination date is set, alerts are also sent to PCMM coordinators and the staff member
becomes unavailable for assignment on the PCMM UI. They are not automatically unassigned from
teams/positions.

6.4. JMS / MDB’s
PCMM uses JMS messaging provided by the container (WebLogic) to ensure reliable message delivery
for some processes. Inbound message processing for message-driven POJO’s is configured using Spring’s
namespace-driven “listener-container” (see http://docs.spring.io/spring/docs/4.0.0.RELEASE/spring-
framework-reference/htmlsingle/#jms-mdp) and the typical JmsTemplate pattern for outbound message

PCMMR
System Design Document 64 February 2014

production (see http://docs.spring.io/spring/docs/4.0.0.RELEASE/spring-framework-
reference/htmlsingle/#jms-jmstemplate).

6.4.1. Batch Process Events
This is a generic listener which activates the Spring Batch process given a JMS message. The message
contains parameters specifying which job to run, what object IDs to process in the job and other
“plumbing” fields like the requesting user ID and Vista authentication token to use. Binary objects sent
using a dedicated JMS message key are automatically persisted in the DB for later reference in the Spring
Batch job if needed.

6.4.2. Vista Update (Synchronization) Event
This is a simple JMS sender/receiver which manages requests to synchronize a PCMMR Team object
graph with Vista. It captures the team needing synchronization and delegates the incoming request to the
VistaSynchronizationServiceImpl class. JMS was used as a wrapper for this process so that requests could
be distributed easily across multiple unattended servers, and so that a certain level of resiliency was met if
the system went offline. The JMS store-and-forward queue configuration ensures the sync requests aren’t
lost. See section 6.5 for more details on this process.

6.4.3. MVI Service
This is a simple JMS receiver which manages requests to update patient information given incoming MVI
messages. It is a thin wrapper / delegate which accepts the incoming message and immediately stores it in
a HazelCast map for later consumption by the MVIPatientInboundProcessorJob. See section 6.3.1 for
more details on this process.

6.5. Vista Synchronization
PCMMR is the authoritative source for all patients and the Care Teams to which they are assigned.
PCMMR implements a national view of patient care teams and provides a critical function for patient
management and care, allowing the display of each patient’s Care Teams (regardless of which VistA Site
they are assigned to) in the CPRS header and the CPRS Primary Care window. In addition to CPRS,
there are many other Vista applications that rely on data sourced in the PCMM Vista files, including
MyHealtheVet, DSS and Scheduling/Appointment Management. For this reason, PCMMR synchronizes
a majority of its enterprise data back to the individual Vista systems and stores the data in the same
PCMM files used by the legacy application. It does this via VistaLink, invoking mostly PCMM and
Scheduling-namespaced RPCs. The synchronization of this data prevents other applications from needing
to request data from the new PCMMR data store. It also alleviates a performance bottleneck since CPRS
is accessed nationally at such a high rate that PCMMR wouldn’t be able to keep up with its incoming
requests for team information.

The Vista synchronization process occurs after the Team Validation job runs (see section 6.3.4). Teams
are only synchronized to Vista if they don’t have validation problems, to ensure data consistency. In order
for this process to run for a given Vista station, the process at that site must be enabled via the flag stored
in the PCMM_VISTA_INSTANCE table. A “last vista synchronization date” field is set by this process
for each team (in the TEAM database table), and is reported in the Team profile screen at the bottom.
Also a background job log entry is created, with individual entries describing what elements were
created/updated/deleted in Vista during the synchronization process, and their respective IENs.

PCMMR
System Design Document 65 February 2014

The synchronization process as a whole is intended to operate passively, outside the normal
JPA/Hibernate versioning system, so that it doesn’t interfere with users making concurrent changes to the
team on the front-end. As users make those UI changes, the team object in the database is re-flagged for
validation / synchronization, and the version incremented. When the background job is finished
synchronizing one version of the team, it only sets the “sync needed” flag back to “N” if the version still
matches what it was at the beginning of the synchronization process; otherwise, some other process or
user must have since modified the team and another synchronization is needed. However, if a data
element is written to Vista and Vista assigns it an IEN, that IEN is stored back to the PCMMR database
regardless of the version of those objects, to ensure Vista data entries aren’t “lost”. The IEN fields stored
in the database are considered scoped to the Vista Sync process itself, and aren’t updated via the front-end
UI changes, so no conflicts should occur.

The complete process is outlined below:

JMS vista sync queue listener: incoming team_id, team_version

lock hazelcast on "VistaSync" + team_id
create read-only DB transaction
get team with same ID and version, prefetch children

if none exist, exit, we'll sync after the next update
ensure vistasync active for team's station
push changes to Vista

assign IENs in new transactions without incrementing team version or
caring what our DB versions are

update last vistasync date wihtout version increment on team
unlock hazelcast

6.6. Performance Enhancements

6.6.1. Hibernate level 2 cache – ehcache
The Hibernate level 2 cache is described at https://docs.jboss.org/hibernate/orm/4.0/manual/en-
US/html/performance.html#performance-cache and is implemented in PCMMR via EHCache. It is
configured in the file ehcache-pcmm.xml. In this file are various caches for objects and their children
collections.

6.6.2. JPA batch fetch
JPA batch fetch is a way to prefetch many children of an object using a separate dedicated query for
retrieving N children at once, as opposed to running a separate query to retrieve each individual child as
it’s accessed. It is described in detail
at http://en.wikibooks.org/wiki/Java Persistence/Relationships#Batch Fetching. An example of how this
is configured in a PCMM model object is at the accessor method level:

@OneToMany(mappedBy = "team", fetch = FetchType.LAZY, cascade = CascadeType.REMOVE)
@BatchSize(size = 40)
@JsonProperty
public List<Position> getPositions() { …

As shown, the @BatchSize annotation on the getter for the child collection signifies that Hibernate should
run a query to retrieve Position children in sets of 40.

PCMMR
System Design Document 66 February 2014

6.6.3. JPA join fetch & QueryCustomization
Join fetching is described at http://en.wikibooks.org/wiki/Java Persistence/Relationships#Join Fetching
and is a way to proactively select data for children of an object in the same query that’s used to select data
for the parent. PCMM implemented an abstraction for this type of optimization in the
QueryCustomization class, which encapsulates a set of customizations for running a query. For those
given DAO methods that support a Java 7 varargs QueryCustomization parameter, the caller can specify
which children should be proactively fetched for that call. No other duplication or customization of the
DAO Java method is necessary.

An example looks like:

List<PatientAssignment> pcAssignments = patientAssignmentDAO
 .findAssignmentsForCriteria(null, null, null, null,
 null, patient.getId(), null, PRIMARY_CARE,
 null, null, Arrays.asList(ACTIVE, INACTIVE),
 null, new QueryCustomization(TEAM));

This signifies to the DAO that the caller is retrieving a set of PatientAssignment objects, but in each
object the Team field should be join-fetched and pre-populated. The TEAM enum value passed to the
QueryCustomization constructor is an instance of a class whose name ends with “AssociationFieldType”
(by PCMM convention) and resides in the gov.va.med.pcmm.persistence.queryCustomization package.
These enums simply represent the field names for associations or children collections contained in the
main PCMM model objects.

6.6.4. DB indexes
Database indexes were added to support specific long-running queries after performance testing was
implemented and results analyzed. One example is an index could be {IEN, station number} for those
tables which contain these columns; they are often criteria used to search for items used during Vista
synchronization and/or MVI inbound message handling.

6.6.5. Multiple unattended servers
PCMM has many background scheduled jobs and batch processes, in sections 6.2 and 6.3. These
processes operate over 130+ Vista stations, which is the reason that multiple unattended servers are used
to run them concurrently. Care was taken to ensure each unattended server operates independently on any
given item, typically using HazelCast locking – see the
gov.va.med.pcmm.service.cluster.ClusterLockType enum values for uses of this type of locking.

Any unattended server can be taken offline, or more servers added to the mix, to support horizontal
scaling of the running application. HazelCast can transparently adopt new servers at runtime and
WebLogic will distribute JMS messages per its cluster configuration accordingly.

6.6.6. Spring @Async / TaskExecutors
Many processes in PCMM operate over large data sets and for performance reasons need to run fragments
of code in separate concurrent threads. Spring has a clean design for this requirement which uses a
combination of its @Async method annotation and task executors, which delegate to internal configurable
thread pools for efficiency. See http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/scheduling.html – PCMM configures these items in the pcmm-scheduledTasks.xml file.

PCMMR
System Design Document 67 February 2014

7. External Interface Design
PCMMR communicates with several other systems, such as individual VistA installations (via the
VistaLink tool), MVI via web services and HL7, LDAP for general user authentication and SMTP for
sending emails. A summary of all interface systems is contained in the following embedded spreadsheet
(and is subject to change):

PCMM Interfaces

7.1. Interface Architecture
• VistA - Across the VA network, over 100 separate installations of VistA exist, inside VA

Medical Centers (VAMCs), Community-Based Outpatient Clinics (CBOCs), and elsewhere.
PCMMR communicates with these different sites over a socket connect via the VistaLink tool,
which is a shared WebLogic resource adapter.

• MVI – MVI is the authoritative source for patient identity trait information, such as name, social
security number and date of birth. It correlates and publishes changes to this identity information
to various systems within the VA, including all VistA sites. PCMMR interfaces with MVI to
ensure that the local data stored by PCMMR is in sync with the “primary view” - the master
authoritative copy - such that when users perform searches against the data stored in the PCMMR
enterprise database, they can be assured they will match the official latest version from MVI.

In order to perform this synchronization, PCMMR subscribes to HL7-based messages published
by MVI. These update messages can be both primary view updates as well as split and merge
requests for cases when two or more patients are mistakenly linked to a single record, or when
two or more records are linked to a single patient. See section 7.2 for details.

• CPRS – PCMM writes to the Outpatient Profile file for each patient at each Vista site, which is
then read by CPRS when displaying PACT information in line 1 of the header box on the CPRS
patient cover page.

When the user clicks the header box in CPRS, it calls a PCMMR webservice which returns a
complete set of information for the patient in XML format. A Vista RPC then transforms this
XML into the content shown in the popup window that appears.

• LDAP – At the CISS level, when any user logs in, the system authenticates the user credentials
and assigns a set of roles and permissions for later authorization based on the data stored in the
VA enterprise LDAP server. The roles and permissions within LDAP are synchronized with the
roles assigned in the PCMMR enterprise database.

• SMTP – Notification functionality in PCMMR (and indeed across all CISS partner applications)
relies on an SMTP server for sending email. The main VA SMTP server is used for this purpose.
During production deployment, a separate linux SMTP proxy may be used to achieve “retry”
logic in the event that the main enterprise SMTP server is down for maintenance or can’t be
reached on the network.

7.2. Interface Detailed Design

PCMMR
System Design Document 68 February 2014

7.2.1. Vista
Deployed separately from any application, VistaLink is shared by all enterprise Java applications in
WebLogic and provides to them an abstraction on top of the socket connection, such that they can run
remote procedure calls (RPCs) and send & receive data to/from each individual Vista instance.

In PCMMR, the VistaController class contains methods that use VistaLink to run various RPCs, which in
turn relies on the RpcServiceUtilFactory class for utility methods. The approved PCMMR application
proxy user is used for all data interface requests to Vista; auditing information is stored and managed in
PCMMR’s database history tables (those ending in _H).

PCMMR has the ability to search the patient and staff population at the specific VistA site level (in
addition to searching its own local database). It also can query for patient auto-inactivation events, recent
patient encounters and events logged when the date-of-death field is set or unset.

7.2.2. MVI
The integration pattern used by the PCMMR software solution is the “Decentralized Hybrid pattern”,
defined in the MVI Service Description Document. This pattern allows PCMMR to interact with MVI to
retrieve data.

Messages are sent to MVI from PCMMR and vice-versa using the HL7 format. The older style (v2.4) and
newer style (v3) of this format are both used, and they are transported along different protocols
(HTTPS/SOAP web services, MLLP) based on the capabilities of the MVI services at the time of
integration. Mirth Connect integration engine transforms inbound and outbound HL7 messages and
converts them to JMS messages on the fly for processing by PCMMR. For details and example request
bodies, refer to the latest MVI Service Description Document.

A business requirements flow was co-developed by the PCMMR and IAM teams during the
creation of the iRSD, which can be seen in the appendix section 10.3.

PCMMR will have a dedicated station number assigned to it with a 200-series prefix. Based on
the different events described here and in the iRSD, PCMMR will be communicating with MVI
as per the following table:

Call / Event Direction Format Message Code /

Web Service call

get Primary View + get
Corresponding IDs composite
call

PCMMR -> MVI HL7 v3 1305 MVI Comp1

Register PCMMR as system
of interest for patient

PCMMR -> MVI HL7 v3 1305 MVI Comp1
with “Register
Interest” flag passed

Patient identity information
updates

MVI -> PCMMR HL7 v2.4 ADT-A31

Treating facility updates MVI -> PCMMR HL7 v2.4 MFN-M05

PCMMR
System Design Document 69 February 2014

ICN merge resolution- more
than one person has the same
ICN and a split has been done

MVI -> PCMMR HL7 v2.4 ADT-A43

ICN duplicate resolution –
one person has more than one
ICN

MVI -> PCMMR HL7 v2.4 ADT-A24

When communicating with MVI, generally the fully-qualified VistA source ID is used. This consists of a
concatenation of several tokens, including the DFN (also known as the Internal Entry Number or IEN)
and station number.

To query MVI, an HL7 request is created and sent to the appropriate endpoint in the MVI system. The
VAAFI security layer is utilized for all environments except development. It encrypts both data sent to
and received from the MVI server. For details of the HL7 message format, protocol, and example request
bodies, refer to the latest MVI Service Description Document. For additional requirements and the
workflow of the “Manage a Patient Panel Request” use case, see section 10.3.

Several use-cases have been defined in the PCMM-MVI Integration Requirements Specifications
Document (RSD):

a. Managing a Patient Panel Request - In order to receive current identity data from MVI,

PCMMR will use a VistA Source ID to send MVI a Retrieve Person with Corresponding IDs
request for each initial Patient Panel Request.

PCMMR shall pass the “Register Interest Flag” in the Retrieve Person with Corresponding
IDs request. This will enable PCMMR to receive identity updates from MVI.

MVI will return a copy of the person’s Primary View (a collection of identity data elements,
including the ICN) and provide updates to that data as they occur in MVI. MVI also will
provide a list of identifiers associated with that person in MVI. This will allow PCMMR to
determine whether a patient in PCMMR is known at other VA Medical Center (VAMC)
sites.

b. Update Person Identity Traits – The Update Person Identity Traits business activity involves

the PCMMR receiving and processing updates from the MVI service to maintain up-to-date
person identity data.

Upon receipt of a message, PCMMR will activate an internal service call which searches for
the affected patient (via VistA source ID) and updates the patient’s identity data within the
PCMMR national database. After successfully updating this data, PCMMR will send an
acknowledgement HL7 message back to MVI signaling that the initial message was
processed.

PCMMR
System Design Document 70 February 2014

c. Process “Resolve Duplicate ICN” Maintenance Message - The Resolve Duplicate ICN
business event involves PCMMR receiving and processing link requests from the MVI
service in order to resolve situations where one person has multiple ICNs.

Upon receipt of a message, PCMMR will activate an internal service call which searches for
the separate patients and resolves the duplicate data within the PCMMR national database.
The resolution steps include, but are not limited to:

• Moving one patient's team assignments to the other patient
• Deleting the bad patient from the database (the old records will permanently exist in

the "_h" database history tables for auditing purposes)
• Updating the patient's identity trait information with the new authoritative (merged)

data stored in the MVI primary view
• Sending an alert to the PCMMR coordinators at the affected sites notifying them of

the patient merge and subsequent team changes (as well as any business rules now
violated, such as duplicate PACT assignments)

After successful resolution of the duplicate ICN situation, PCMMR will send an acknowledgement
HL7 message back to MVI signaling that the initial message was processed.

A duplicate ICN message can originate from either the MVI enterprise system or from any of the
Vista stations. Due to the fact that PCMMR synchronizes data back to the individual Vista systems, it
is critical that PCMMR does not merge patient data before the Vista system itself does; doing so
would risk corrupting patient assignments and other PCMMR data elements. Therefore, upon receipt
of a “Resolve Duplicate ICN” message, PCMMR performs a preliminary lookup into the appropriate
Vista system to ensure the merge already occurred. For more workflow details, please refer to the
embedded “MVI Detailed Design” document at the end of this section.

d. Process “Resolve ICN Mismatch” Maintenance Message – The Resolve ICN Mismatch

business event involves the PCMMR receiving and processing mismatch broadcasts from the
MVI service to resolve situations where more than one person is linked to the same ICN.

Upon receipt of a message, PCMMR will activate an internal service call which searches for
the affected patient (via ICN) and splits the single record into the appropriate multiple patient
records within the PCMMR national database. The resolution steps include, but are not
limited to:

• Creating a new patient record
• Optionally moving one or more team assignments to the new patient record, if

business rules allow
• Updating both patients’ identity traits with the new authoritative data located in the

MVI primary view
• Sending an alert to the PCMMR coordinators at the affected sites notifying them of

the patient split and subsequent team changes (as well as any business rules now
violated, such as each patient having a required PACT assignment)

PCMMR
System Design Document 71 February 2014

After successful resolution of the ICN mismatch, PCMMR will send an acknowledgement HL7 message
back to MVI signaling that the initial message was processed.

Detailed information about the specific messages and application logic can be found in the following
embedded document:

PCMMR_MVI_Detaile
d_Design.docx

7.2.3. CPRS
When the patient header box is clicked, CPRS uses the MyHealtheVet WebService Client (MWSC) Vista
tool to perform an HTTP GET request to PCMMR. The request URL is in the format:

eg.

An example of the response returned looks like:

<PatientSummary>
 <PatientNationalAssignments>
 <PatientStationLevelAssignment>
 <StationNameAndNumber>CHEYENNE VAMC (#442)</StationNameAndNumber>
 <PrimaryCareAssignments />
 <MentalHealthAssignments />
 <OEFOIFAssignments />
 <SpecialtyAssignments>
 <SpecialtyAssignment>
 <CareTypeCode>4</CareTypeCode>
 <CareTypeName>MENTAL HEALTH</CareTypeName>
 <teamName>cmg *MH* CH12</teamName>
 <TeamMembers>
 <teamRoleName>(MHTC) PSYCHIATRIST</teamRoleName>
 <name>Hollar,Saul K</name>
 <phone>(999) 999-9999</phone>
 <pager>(666) 666-6666</pager>
 </TeamMembers>
 </SpecialtyAssignment>
 <SpecialtyAssignment>
 <CareTypeCode>4</CareTypeCode>
 <CareTypeName>MENTAL HEALTH</CareTypeName>
 <teamName>cmg *MH* Inpatient 442</teamName>
 <TeamMembers>
 <teamRoleName>ADDICTION THERAPIST</teamRoleName>
 <name>Thornhill,Carmela W</name>
 <phone xsi:nil="true" />
 <pager xsi:nil="true" />
 </TeamMembers>
 <TeamMembers>
 <teamRoleName>NURSE PRACTITIONER</teamRoleName>
 <name>Hubertus,Lourdes L</name>
 <phone xsi:nil="true" />
 <pager xsi:nil="true" />
 </TeamMembers>

PCMMR
System Design Document 72 February 2014

 </SpecialtyAssignment>
 </SpecialtyAssignments>
 </PatientStationLevelAssignment>
 </PatientNationalAssignments>
 <NonVAProviders />
</PatientSummary>

PCMMR uses a standard Spring controller along with the Jackson marshaller to serialize an object graph
for this patient into XML and send it back to the Vista caller. All controller and model classes supporting
this web service are stored underneath the gov.va.med.pcmm.web.wsendpoints Java package.

8. Human-Machine Interface
The user interface is via web browser. Internet Explorer and Firefox have been tested and verified,
although IE 8-11 is the approved VA standard). The application user interface will be section 508-
compliant.

8.1. Interface Design Rules
Basic common web UI rules were considered when designing the user interface for this application. The
use of common HTML inputs such as radio buttons, checkboxes and text input boxes maps to the type of
data being entered, such as a single selection, multiple selection, free text, etc. A common look-and-feel is
shared across all screens, such as a unique title for each page, a main menu and set of breadcrumbs across
the top title bar of the application, a footer row containing contact information and CISS links which
allow the user to log in and out and switch to other portlet partner applications such as OHRS.

An analysis was performed by a Human Factors Engineering (HFE) team, and the results sent back to the
PCMMR team in the following document:

HF Heuristic Review
of PCMM Prototype
The PCMMR team strives to make most or all of these design improvement suggestions by the time the
final product is delivered to the customer.

8.2. Inputs
Inputs made to the PCMMR application are performed inside the web browser via HTML forms and
submitted either with a common form submission button or via other image buttons using AJAX
functionality.

If the data submitted by the user is incorrect or fails application validation, an error message is displayed
to the user next to the field. For example:

PCMMR
System Design Document 73 February 2014

Some validations are performed on form submittion but before the page input values are actually sent to
the server (a performance enhancement). Additionally, some fields have masks defined which guarantee
that the data is entered in the correct format. For example, a date field shows underscores for the different
date/time values as the user is entering them, so the correct format is adhered to:

PCMMR
System Design Document 74 February 2014

The only secured input field in the application is the password field on the CISS login screen, which
follows the common HTML standard of masking the data entered as a set of bullets:

PCMMR
System Design Document 75 February 2014

8.3. Outputs
Output of data in PCMMR is performed mainly in the web browser window, and generally is presented in
two formats:

• Search results and lists of data are displayed in a standardized table format, which has embedded
controls for sorting on any column, filtering on sensible columns via dropdowns at the eheader or
footer level, and paging via a set of controls which group results into groups of 10-30 items. For
example:

PCMMR
System Design Document 76 February 2014

• Detailed information about any one object is generally broken down and grouped into field sets –

boxes that surround groups of fields with a common category. For example:

PCMMR
System Design Document 77 February 2014

For security considerations, the social security numbers are sometimes masked to only show the last four
digits. This only serves to add a thin layer of obfuscation for casual access to these screens since the
privacy standard is on a need-to-know basis. To see the full number, or to search on sensitive fields in
query screens, the user can switch to a detailed profile view of the data.

PCMMR
System Design Document 78 February 2014

Reports are generated by SqlServer Reporting Services (SSRS) in a variety of formats. These reports are
in a tabular format and can contain both detailed data (patient-level) and summary data (aggregate counts
or sums across a variety of categories – teams, duty stations, etc.).

PCMMR
System Design Document 79 February 2014

8.4. Navigation Hierarchy
After logging into the CISS portal and activating the PCMMR portlet partner application by clicking on
the “PCMM” button on the top header bar, the user is presented with the PCMMR homepage:

As discussed in the previous section, common interface components are shown on this screen, such as:

• The main menu bar across the top, having a black background

• The breadcrumbs directly underneath – immediately after login, the only value is “PCMM Home”

• The Online Help activation icon – blue question mark directly below breadcrumbs

• The page title, shown centered and surrounded with a rounded rectangle

• The main page content

• The footer bar, consisting of support contact information, the VA logo, and the currently detected
user time zone and application versions

Navigating throughout PCMMR involves selecting an item from the top menubar or returning to a
previous screen by clicking on one of the breadcrumbs.

PCMMR
System Design Document 80 February 2014

8.4.1. “Profile” example screen
The following shows an example of viewing detailed profile information for an object in PCMMR. This
particular screen shows Team details:

As displayed, fields are grouped into boxes of field sets, and capture details for the particular object.
Because the user has permissions to update this object, the values are shown inside HTML input fields,
which can be updated and the changes saved by clicking the “Submit” button at the bottom. Had the user
not had edit ability for this team, all values would be simply displayed as fixed text and the Submit button
would not be present.

The Timeline field shown at the bottom is initially hidden, but can be shown by clicking the “View/Edit
Complete Timeline” link. When open, it looks like:

PCMMR
System Design Document 81 February 2014

The table shown displays the complete history for this object, and the embedded controls (in the gray
background box) allow new entries to be added to the timeline/history. The history table is sorted in
descending chronological order. When a change is added to the timeline, it’s done via AJAX such that the
page doesn’t need to be completely submitted. After the change is saved, the table automatically updates
in the page and the user is presented a confirmation dialog box:

PCMMR
System Design Document 82 February 2014

8.4.2. “List” example screen
Many screens in PCMMR also provide the user the ability to search for objects using a variety of criteria.
The search results are displayed in a table format, which is consistent throughout the application. The
search screen itself can either be a normal webpage or a popup dialog box. An example of the latter is the
Team Search popup dialog box, which looks like:

PCMMR
System Design Document 83 February 2014

This screen provides only one way to search – by Name in the top text box – and all search
results are immediately shown in the same dialog box. The user can choose to Cancel, which hides this
box and returns the user to the previous screen they were working on, shown masked below the popup.

The embedded table of results has the common set of features described in an earlier section – sorting,
paging and filtering.

8.4.3. “Alerts” functionality
When logging in to PCMMR, the user may have one or more Alerts which need addressing. Alerts are
simple messages that can either be strictly informational, or require some additional action from the user.
The user will see the message “You have one or more active alerts. Please click here to view them” in a
red box next to the PCMMR welcome text. When addressing an informational alert, the user can simply
dismiss it in a similar fashion to deleting an email. When addressing an actionable alert, a new red alert
box appears across the top of all pages in the user’s current web session signifying they are currently

PCMMR
System Design Document 84 February 2014

working an alert, and until they mark the alert as complete, the alert message will continue to be
displayed:

As shown, the user has two options: “Save for Later”, which removes the red header bar but keeps the
alert in their work queue, or “Mark as Complete” meaning the user finished working on the alert and
wants to log it as complete.

PCMMR
System Design Document 85 February 2014

8.4.4. “Context-Sensitive Help” functionality
PCMMR contains a complete set of context-sensitive help in the standard format displayed below:

This help is accessible on all pages by clicking the blue question mark in the upper left corner, and in
most cases, the help will open directly to instructions that pertain to the function the user is performing. In
the event that no context-sensitive help exists for the user’s current function, the user will simply be
shown the main help table of contents.

This help window opens as a separate window on top of the main PCMMR browser application window,
such that the user’s session is not disrupted.

9. System Integrity Controls
All database changes (insertions, deletions and updates) are audited in dedicated history tables, one per
main table. The history table naming convention is to append the main table name with an “_H”. These
tables contain the user making the change, the date/time the change occurred, the type of change
(Insertion, Deletion, Update) and the complete row data before the change occurred. Thus, the complete
history of any item in the PCMMR application can be retraced by inspecting the history table entries in
the order that they were created.

PCMMR
System Design Document 86 February 2014

Additionally, Create/Read/Update/Delete (CRUD) permissions are explicitly defined for all objects
throughout the PCMMR application, and assigned to each role in the CISS security level. The current
CRUD spreadsheet is in the following document:

PCMM CRUD Matrix

These security restrictions serve to selectively disable or show/hide functions in PCMMR, such as the
ability to create new teams, the ability to run various reports, etc. The implementation of these
permissions uses the standard Spring security features, and can be activated at both the JSP level:
<security:authorize access="hasRole('View Report List')">
 View Report List
</security:authorize>

and also the service method level:
@PreAuthorize("hasRole('" + CISSPermissionType.UPDATE_TEAM + "')")

public Team updateTeam(Team team, long institutionId) {

…

}

Access to the database is restricted to a set of users and authentication is performed by SQL Server when
logging in (either via the SQL Server Administration tool or over TCP/IP using “SQL Server
Authentication” method). Some users who have read-only privileges to the database, such as for
reporting, do not have permissions to modify the table structures or data.

10. Appendix A

10.1. Requirements Traceability Matrix

PCMM Requirements
Traceability Matrix

10.2. Packaging and Installation
Per customer requirements, the software will be packaged as a compressed and encrypted ZIP file for
delivery. Installation of the software into a production environment involves deploying the application
.ear files for both the attended server and unattended servers, the online help and the VistaLink shared
libraries and console for connectivity to the various VistA systems.

10.3. MVI use case “Manage a Patient Panel Request”
requirements

The following requirements break down the logic followed in this use-case:

PCMMR
System Design Document 87 February 2014

1. If a VistA Source ID is not available in the initial patient panel request, PCMMR shall use
the patient name and Social Security to search VistA for a Source ID.

2. PCMMR shall use a VistA Source ID to send MVI a Retrieve Person with Corresponding
IDs request for each initial Patient Panel Request.

3. PCMMR shall pass the “Register Interest Flag” in the Retrieve Person with Corresponding
IDs request. This will enable PCMMR to receive identity updates from MVI. PCMMR will
receive ICN duplicate and mismatch updates from MVI.

Note: PCMMR will need to determine if there is a business need to receive identity updates
from MVI.

• The MVI system will return results to the PCMMR system.

• If a record is found using the MVI’s Retrieve Person with Corresponding IDs service, it
is returned to PCMMR with the active ICN and current Primary View traits for the
person queried.

• If a record is not found, the MVI submits an error message to the PCMMR user and the
process ends.

4. If a record is found in MVI, PCMMR shall initiate a Search for Person in the PCMMR
system. The Search can use the Source IDs returned by MVI to determine if the Patient is
known in other sites.

5. If a record is found in PCMMR, the PCMMR system shall update the patient record, if
needed, with the information provided by MVI.

6. If a record is not found in PCMMR, PCMMR shall create a record that will include the VistA
Source ID and the ICN.

7. The PCMMR user shall evaluate the patient record and associated list of treating facilities.
The PCMMR user will Create or Modify a Team Assignment as needed.

PCMMR
System Design Document 88 February 2014

10.4. Design Metrics
The only relevant metrics to take into consideration are those defined in the Requirements Elaboration
Document (RED). These metrics describe overall flow in the application and do not necessary specify a
detailed screen-by-screen or component-by-component design. Required Technical Documents

The following documents must be submitted for review to support proper approval:

• Product Architecture Document;
• Disaster Recovery Plan;
• Interface Data Mapping
• Security Assurance Strategy

For additional information regarding how to obtain proper approval for this project, refer to the following
documents:

• IT Infrastructure Standards

PCMMR
System Design Document 89 February 2014

• Systems Engineering and Design Review (SEDR) process
• Enterprise Architecture Web page
• One-VA TRM

PCMMR
System Design Document 90 February 2014

Attachment A - Approval Signatures
This section is used to document the approval of the System Design Document (SDD) during the Formal
Review. The review should be ideally conducted face to face where signatures can be obtained ‘live’
during the review however the following forms of approval are acceptable:

1. Digital signatures tied cryptographically to the signer (instructions for digital signature can be
found in the Digital Signature Guide in
ProPath process/Library/digital signature guide.doc)

2. Physical signatures obtained face to face or via fax
3. /es/ in the signature block provided that a separate digitally signed e-mail indicating the signer’s

approval is provided and kept with the document

The Chair of the governing Integrated Project Team (IPT), Business Sponsor, Information Technology
(IT) Program Manager, and the Project Manager are required to sign. Please annotate signature blocks
accordingly.

