Introduction
What it does

This tool permits a series of tests to be written addressing specific tags or entry points within a project
and act to verify that the return results are as expected for that code. The significance of this is that,
when run routinely any time that the project is modified, it will act to indicate whether the intended
function has been modified inadvertently or whether the modification has had unexpected effects on
other functionality within the project. The set of unit tests for a project should run rapidly (usually
within a matter of seconds) and with minimal disruption for developers. Another function of unit tests
is that they indicate what the intended software was written to do. The latter may be especially useful
when new developers start working with the software or a programmer returns to a project after a
prolonged period.

The concept of Unit Testing was already in place before Kent Beck created a tool that he used in the
language Smalltalk, and then was turned into the tool Junit for Java by Kent Beck and Erich Gamma. This
tool for running specific tests on facets of a software project was subsequently referred to as xUnit,
since NUnit was developed for .NET developers, DUnit for Delphi developers, etc. MUnit is the
equivalent tool for M developers to use and was originally created in 2003.

Using M-Unit

The M-Unit functionality is contained in the %ut and %ut1 routines. The code was originally written by
Joel lvey when he was working as a developer for the Department of Veteran Affairs. The code had
input as suggestions by several other developers both inside and outside of the VA, including Kevin
Meldrum and especially Sam Habiel who made significant contributions to the current status. Current
development is being continued for OSHERA via VistA Expertise Network.

%ut ;VEN-SMH/JLI - PRIMARY PROGRAM FOR M-UNIT TESTING ; 08/04/14 16:13
;;0.1;MASH UTILITIES;

; This routine and its companion, %utl, provide the basic functionality for
; running unit tests on parts of M programs either at the command line level
; or via the M-Unit GUI application for windows operating systems.

From a user’s perspective the basic start for unit tests from the command line is the entry point ENA%ut,
the first argument is the name of the routine to be tested and is required, but the tag can take up to two
additional arguments: a verbose indicator and a BREAK indicator, both of these require a non-zero value
to activate them.

D EN~%ut(“ROUTINE_NAME")
or
D EN~%ut(“ROUTINE_NAME,VERBOSE,BREAK)

The command with a single argument will result in the unit tests being run and each successful test is
shown by a period (*.’) followed by specification of the number of tags entered, the number of tests run,
the number of failures, and the number of errors encountered. Instead of the period for successes,

failures or errors are indicated by the tag and routine name for the specific test, a description of the test
if provided, and a message concerning the failure if provided or the line and routine at which the error
occurred. The verbose option will result in a listing of each test that is executed, which may make it
more difficult to identify problems if they have occurred. The BREAK option will result in termination of
the unit test as soon as a failure or error is encountered.

The code written in a unit test routine has specific entry points that should indicate a specific set of
functionality being tested. The tag may have more than one test, but these should all focus on the same
aspect being tested. Originally specification of the tags and a description of the functionality being
tested by the tag testing were entered following an XTENT tag in the following manner.

XTENT ;
;;TEST1;Testing functionality for one feature
;;ANEW1;Testing another piece of functionality
;;ATHIRD;Testing still something else

More recently, an alternative method was added similar to the annotation used in C#, thanks to the
suggestion of Kevin Meldrum. The indicator @TEST is specified as the first string following the semi-
colon on the same line as the tag, and a description can then be added following this indicator.

TEST4 ; @TEST another test for different functionality
Since there will frequently be multiple routines with tests created to test a specific project, these can be

indicated in a manner similar to the original description of the entry tags, following a XTROU tag. The
following could be used to link additional test routines to a ZZUXQA1 test routine.

XTROU ;
;;ZZUXQA2
;;1ZZUXQA3
;;ZZUXQA4

The other routines can also reference these as well, or additional related test routines. Each routine
would be included only once, no matter how many of the other routines reference it.

A test routine can use one of three types of calls for its tests, determining truth, equivalence, or simply
indicating failure for the test. In each of these a final argument can be used to specify information about
the specific test result.
Truth is tested by the command

DO CHKTFA%ut(TorF,message)
where ‘TorF’ is a value to be tested for true (passing the test) or false (failing the test).

Equivalence is tested by the command

DO CHKEQ”%ut(expected,result,message)

where ‘expected’ is the value that is expected from the test, and ‘result’ is the value that was obtained
and should be equal to ‘expected’ if the test is to pass.

Failure already determined is specified by the command
DO FAILA%ut(message)

and is generally used when the processing has reached an area that it shouldn’t be expected to reach
given the circumstances, and ‘message’ then describes the situation.

The MUnit functionality is set up to capture information on errors, and to continue processing the
remaining tests within the tag as well as additional tags.

There are four other tags that have meaning to the MUnit functionality - STARTUP, SETUP, TEARDOWN,
and SHUTDOWN. Frequently, to provide specific data to use for testing, it may be necessary to add data
which is totally temporary, either for all tests in one pass, or before each test is run.

The STARTUP tag specifies code that should be run once when the testing is starting up. At most only a
single STARTUP tag should be present in a tests for a given project. Its companion is SHUTDOWN, which
if present, will be run only after all of the tests have been completed. Again, there should only be a
single SHUTDOWN tag in a project.

The SETUP tag specifies code that should be run before each test tag in a given routine is run, there
could be similar SETUP tags in other routines as well. Its companion is TEARDOWN which, if present, will
be run immediately after each test tag is processed.

It should be noted that care should be taken in using these four tags, since they may end up hiding
significant functionality from testing or result in problems later if changes are made to the tests (which
would then be converted into changes in the project related to the tests).

An additional tag (CHKLEAKS~%ut) is available for checking for variable leaks either as a part of a unit
test, or it can be called outside of unit tests as well.

CHKLEAKS(%zuCODE,%zuLOC,%zulNPT) ; functionality to check for variable leaks on
executing a section of code
; %zuCODE - A string that specifies the code that is to be XECUTED and checked for leaks.
; this should be a complete piece of code
; (e.g., "S X=SSNEWAXLFDT()" or "D ENA%ut(""ROUNAME"")")
; %zuLOC - A string that is used to indicate the code tested for variable leaks
; %zulNPT - An optional variable which may be passed by reference. This may

; be used to pass any variable values, etc. into the code to be

; XECUTED. In this case, set the subscript to the variable name and the

; value of the subscripted variable to the desired value of the subscript.

; e.g., (using NAME as my current namespace)

; S CODE="S %zulNPT=SSENTRYAROUTINE(ZZVALUE1,ZZVALUE2)"

; S NAMELOC="ENTRYAROUTINE leak test" (or simply "ENTRYAROUTINE")
; S NAMEINPT("ZZVALUE1")=2ZVALUE1

; S NAMEINPT("ZZVALUE2")=ZZVALUE2

; D CHKLEAKS”A%ut(CODE,NAMELOC,.NAMEINPT)

; If part of a unit test, any leaked variables in ENTRYAROUTINE which result

; from running the code with the variables indicated will be shown as FAILUREs.
; If called outside of a unit test, any leaked variables will be printed to the

; current device.

The GUI MUnit application provides a visually interactive rapid method for running unit tests on M code.

.1 M-Unit - Testing Framework (OSEHRA) = =
File Help
Server Part:
1. MYSERVER ADDRESS 9502 Select Server Dizconnect
2. Primary Test Rotine:
I
3 (Lt Connected
a Fun Exit
Tags: Tests: Errors: Failed: Elapsed

ALERTS
DEBUGGER
TESTS FOR UNIT TEST ROUTINES

Test Higrarchy | Failures/Ermors

Figure 1. Selection of an M-Unit test

After specifying the server address and port, the user can sign on or click the Select Group button to
select a unit test from the M-UNIT TEST GROUP file (#17.9001) as shown here (Figure 1), or simply enter
the name of a unit test routine in the Primary Test Routine field and click on List. This will bring up a list
of the routines and tags in the unit test run (Figure 2).

File Help
Server: Port:
1. |MYSERVER.ADDRESS | 19502

| Select Server | Disconnect

2. Selected Test Group: | 1E915 FORUNITTESTR| | Clear Group |

3 Connected
i Fun Exit |
Tags: 28 Tests: Erors: Failed: Elapsed
OLDSTYLE - identify old style test indicator functionality ~

OLDSTYL1 - identify old style test indicator 2
BADCHKED - CHKEQ should fail on unequal value
BADCHKTF - CHKTF should fail on false value
BADERROR - throws an eror on purpose
CALLFAIL - called FAIL to test it

LEAKSOK - check leaks should be ok

LEAKSBAD - check leaks with leak

NVLDARGT - check invalid arg in CHKEQ

i ISUTEST - check ISUTEST inside unit test

A Zults -
CHKCMDLN - check command line processing of Zutts
CHKGUI - check GUI processing of %utts

CKGUISET - check list of tests returned by GUISET
NEWSTYLE - test return of valid new style or @TEST indicators

| Test Hierarchy | Failures/Ermors

Figure 2. List of Unit tests selected for running

Clicking the Run button will run the unit tests, resulting in a bar which is green if all tests pass or red if
any failures or errors are encountered (Figure 3).

qlsH slid
o9 REMEES
Josriroozid 19v192 Josla ‘7 soze| | 223AA0AAIVAIEYM |

| quordiesld | |ATe3T TU ADT 2T23T quord) f2a T bsjosle2 S

batasnnod 120l

Jind

€S0.0 bszgeld Y bslisd I zion3 IE :2d28T 8S zpeT

ilsnoifori 10isaibri fzs1 slyz wer ylilnsbi - 31YT2WwW3IKW 15
filsroiforn 10dsaibri J294 slyjz blo yifnsbi - 3172010 -
S 10fsaibri Jzs slylz blo ifnsbi - 11YT2010 -
sulsy lsupsru o list bluorz O3XHD - 03AHIAAT -
sulev s2lsl o lisd bluorlz ATAHD - ITAHIAAS -
szoqug o 1ons e zwordl - A0AA3ICAS -
fidzs1 of JIA7 bellsa - JIa7J1a0 -
Ao sd bluorlz zAssl Aosra - 024431 B
Assl rifiw 23089l Aosrla - 0432443 -

DIAHI ri pe bilsvri Aasrla - TOAAAIVA I
Jz34 firm sbizei T23TUZI Aosro - T23TUZI -

Du.e Wl
zionIizowlis] | ydoersiH fzaT

Figure 3. The unit tests run with failures

If failures or errors are encountered, clicking on the Failures/Errors tab at the bottom of the listing
opens a display of specific information on the problems.

File Help
Server: Port:
1z MYSERVER-ADDHESS 9502 | Select Server | Disconnect
2. Selected Test Group: TESTS FOR UNIT TESTR| Clear Group |
3 List Connected
Exit
4.
Tags: 28 Tests: 31 Emors: 1 Failed: 7 Elapsed 0.023
TAG ROUTINE Eror Type Message
T5 %uttl FAILURE This is an intentional failure.
T5 %utt! FAILURE Intentionally throwing a failure
BADCHKEQ "%utts FAILURE <45 vs<3> - SET UNEQUAL ON PURPOSE - SHOULD FAl
BADCHKTF %utt5 FAILURE SET FALSE (0) ON PURPOSE - SHOULD FAIL
BADERROR " %uttS ERROR <UNDEFINED>BADERROR+6"%utt5 *Q
CALLFAIL"ZuttS FAILURE Called FAIL to test it
LEAKSBAD “%utts FAILURE LEAKSBAD TEST -XNOT SPECIFIED VARIABLE LEAK: X
NYLDARG1 %uttS FAILURE NOWVALUES INPUT TO CHKEQ"%ut - no evaluation possib
< >
Test Hierarchy | Failures/Erors

Figure 4. Specifics on failed tests or errors

In the case shown (Figure 4), all of the failures are intentional. Usually, failures and/or errors are not
intentional and the user can then edit the routine, and save the changes, then simply click on the Run
button again to see the effect of the changes.

To select a new unit test, the user would click on the Clear Group button, then again either select
another group or as shown in Figure 5, entering the name of a unit test routine (ZZUXQA1 and related
routines are not included with the M-Unit Test code and is shown only as an example) and clicking on
the List button.

File Help
Server: Part:
1. |MYSERVERADDRESS 9502 Select Server Disconnect

2. Primary Test Routine ZZUaA| Select Group

4 Fun et

Tags: Tests: Errars: Failed: Elapzed

Figure 5. Specification of unit tests by routine name

Again, clicking the Run button will run the unit tests (Figure 6). This figure shows the desired result, a
green bar meaning that all tests passed.

File Help

Server: Part:
1. MYSERVER.ADDRESS 9502 Select Server Disconnect
2. Primary Test Routine ZZUXRAL Select Group
3 Lk Connected
q Fiun E sit
Tags: 21 Tests: 127 Emars: O Faled 0O Elapsed 7.213
‘]l SENDSURD - serd alett to suragate A

aJll ZZUXOAL -

-l AUDEREFT - Check AUD cross-ef for simple send alert

-l SET3DELT - Setup 3 surogates, remave middle one

-l CHMGSURD - Change surrogates between alerts

-l SENDREMY - Send to surrogate and then remove

-l SEMDRMY2 - Send to user and surogate then remove suragate

RETURMD - Rieturn for user with no alerts to return

i Ll DATESURO - Check for surrogatels] in date range

ol ZZUROAS -

[l MULTEDIT - Create 2 suros, delets first, then reset first

DEYCLIC - Check far eyclic relationships with specific dates

-l MAMEDIT - handle expired manual ar FM edit an top zero node
I MAMLIST - list generated after manual of Fi edit

I CYCLICT - problem with sequential or alternating surogates

Test Hierarchy | Faiures/Emors

Figure 6. Result from the second group of unit tests

The results of both of these groups of tests (%uttl and ZZUXQA1 and their related routines) run at the
command line using are shown in Figure 7.

] Cache TRM:73200 (CACHEWEB) - =
File Edit Help
VISTA>D EN“%ut("%uttl”) o

T5*%uttl - Error count check - This is an intentional failure.

T5*%uttl - Error count check - Intentionally throwing a failure

BADCHKEQ~™%uttS - CHKEQ should fail on unequal value - <&4> vs <3> - SET UNEQUAL
ON PURPOSE - SHOULD FAIL

BADCHKTF"%uttS - CHKTF should fail on false value - SET FALSE (0) ON PURPOSE -
SHOULD FAIL

BADERROR™%ut t5
S =Q

throws an error on purpose - Error: <UNDEFINED>BADERROR+6"%utt

CALLFAIL"%uttS - called FAIL to test it - Called FAIL to test it
IEEEESEHD;%LIHS - check leaks with leak - LEAKSBAD TEST - X NOT SPECIFIED YARIABL

NVLDARG1"%uttS - check invalid arg in CHKEQ - NO VALUES INPUT TO CHKEQ™%ut - no
evaluation possible

Ran S5 Routines, 26 Entry Tags
Slfg%laed 29 tests, with 7 failures and encountered 1 error.
>

VISTA>D EN“%ut("ZZUKQA1")

Ran 5 Routines, 21 Entry Tags
sgg%lﬁed 127 tests, with @ failures and encountered B errors.
>

Figure 7. Command line unit tests for %uttl

The results of the single %uttl unit test routine (and its related routines) run with the VERBOSE option,
that some people prefer, specified permits the individual tests and their results to be seen, but makes
the results more difficult to interpret (Figure 8).

a Cache TRM:73200 (CACHEWEB) =] n
File Edit Help

VISTA>D EN“%ut{“%uttl”, 1) A
T1 - - Make sure Start-up Ran. [OK1

T2 - - Make sure Set-up runs. [OK1

T3 - - Make sure Teardown runs. [OK]

T4 - Entry point using KTHENT. [0K1

TS5 - Error count check
T5"%uttl - Error count check - This is an intentional failure.

TS‘Vuttl - Error count check - Intentionally throwing a failure

[FAIL]
16 - Succeed Entry Point. [0K]
17 - Make sure we write tn pr1nc1pal even though we are on another device..[0K]

T8 - If I0 starts with another device, write to that device as if it’s the prici
pal device. [OK]

T11 - An @TEST Entry point in Another Routine invoked through XTROU offsets.[0K1
T12 - An KTENT offset entry point in Another Routine invoked through HTRU?Oﬁgfse

ts.

MAIN - - Test coverage calculations [OK1

NEWSTYLE - identify new style test indicator functionality.-————————- [OK1

ULDSTVLE - identify old style test indicator functionality..-———————- [OK]
L1 - identify old style test indicator 2. [0K1

OLDSTY

BADCHKEQ - CHKEQ should fail on unequal value
BADCHKEQ™%uttS - CHKEQ should fail on unequal value - <&> ws <3> - SET UNEQUAL
ON PURPOSE - SHOULD FAIL FEREL]

BADCHKTF - CHKTF should fail on false value v
BADCHKTF~%uttS - CHKTF should fail on false value - SET FALSE (8) ON PURPOSE - ~

SHOULD FAIL

[FAIL]
BADERROR - throws an error on purpose
EHDERRURA%utt5 - throws an error on purpose - Error: <UNDEFINED>BADERROR+6"%utt

[FAILI

CALLFAIL - called FAIL to test it
CALLFAIL"%uttS - called FAIL to test it - Called FAIL to test it SR

LEAKSOK - check leaks should be ok [OK]
LEAKSBAD - check leaks with leal
LEHKSBRD;AuttS - check leaks w1th leak - LEAKSBAD TEST - ¥ NOT SPECIFIED VARIABL

E LEAK
[FAIL]

NVYLDARG1 - check invalid arg in CHKEU
NVLDARG1"%uttS - check invalid arg in CHKEQ - NO VALUES INPUT TO CHKEQ”%ut - no
evaluation possible

[FAIL]
ISUTEST - check ISUTEST inside unit test. [OK]
CHKCMDLN - check command llne pruce351ng of %uttS [OK1
CHKGUI - check GUI processing of %ut [OK]
CKGUISET - check list of tests returned by GUISET [0K]
NEWSTYLE - test return of valid new style or @TEST indicators...-—————- [O0K1

Ran 5 Routines, 26 Entry Tags
Checked 29 tests, with 7 failures and encountered 1 error. v

Figure 8. Command line unit tests for %utt1 with VERBOSE option

Summary

M-Unit provides a tool which can assist in writing and modifying routines in M projects with an aim to
minimizing flaws in development and in the ongoing life of the software.

