) OSEHRA

Open Source Electronic Health Record Alliance

OSEHRA Certification
%ut - A Unit Tester For M Code

Version 1
August 6, 2014

Revision History

7/31/14 0.1 Draft Joel Ivey

8/6/14 1.0 Initial Publication Joel vey

Table of Contents

I o4 LY PSPPSRSO 1
P 1ol o] oL TSP RTOPRSOPRTRN 1
3. Introduction to MUNIt M—UNIt TESTING......ceciuiiiieiieeiie e 1
B T B €71 ([0] =L o SRR 2
3.2, M-Unit Test DOS and DOMN LSeeiiuvieiiriieiitieciiee e ectre e et s seree e sbee e sbe e e sbae e s sbaeesebeessbeeesareeeanns 6
3.3, MUNIETESE DETINITIONS ...uveiiiiiiieiiiee ettt neeeneeaneens 6
Q. IMUNILEXE cooitieiie ettt ettt e et e st e e st e et e e e he e e teesaee e s beeabeeeateeenteesaeesateeateeanneenrnean 7
5. Installation 0f the M—URNIt SOTIWAIEccoiiiiiiiiiee s 10
6. RUNNING IM-UNIE TESTS ..oiviiiiiiccie et ste e ra e te e sreeeeenes 12

Table of Figures

Figure 1. Selection 0f an M-UNIEtESE........ooiiiiiiicecieie s 8
Figure 2. List of Unit tests selected for runningccccovveiiiiiicce e 8
Figure 3. The unit tests run With failures ... 9
Figure 4. Specifics 0N failed tESIS OF BITOIS........uiiiiiieieie e 9
Figure 5.Specification of unit tests by routing NAMEc.cooveveiie i 10
Figure 6. Result from the second group Of UNIt tESTScc.oiiiiiiiiece e 10

%ut - A Unit Tester For M Code

1. Purpose

This document describes M—Unit Test, a tool that permits a series of tests to be written to address specific
tags or entry points within a project and act to verify that the return results are as expected for that code. If
run routinely any time that the project is modified, the tests will act to indicate whether the intended
function has been modified inadvertently, or whether the modification has had unexpected effects on
other functionality within the project. The set of unit tests for a project should run rapidly (usually within
a matter of seconds) and with minimal disruption for developers. Another function of unit tests is that
they indicate what the intended software was written to do. This can be especially useful when new
developers start working with the software or a programmer returns to a project after a prolonged period.
Ensuring that well-designed unit tests are created for each project, therefore, assists development,
enhances maintainability and improves end-user confidence in the deployed software.

The concept of Unit Testing was already in place before Kent Beck created a tool that he used in the
language Smalltalk, and then was turned into the tool Junit for Java by Kent Beck and Erich Gamma. This
tool for running specific tests on facets of a software project was subsequently referred to as xUnit, since
NUnit was developed for .NET developers, DUnit for Delphi developers, etc. MUnit is the equivalent tool
for M developers to use and was originally created in 2003.

2. Scope

This document describes the use of the M-Unit Testing tools for building and running unit tests for M
code. It also describes the installation of the M—Unit Test software.

3. Introduction to mUnit M-Unit Testing

A Unit Test framework permits small tests to be written to verify that the code under examination is doing
what you expect it to do. Generally, the tests are performed on the smaller blocks of the application, and
do not necessarily test all of the functionality within the application. These tests can be run frequently to
validate that no errors have been introduced subsequently as changes are made in the code. The concept
of automated Unit testing was introduced by Kent Beck, the creator of eXtreme Programming
methodology, with a tool used in the language Smalltalk. The common JUnit framework for Java, upon
which other frameworks are based, was written by Kent Beck and Erich Gamma. The phrase 'Test-Driven
Development' is frequently used to indicate the strong use of unit testing during development, although
some think of it as equivalent to 'Test First’ development, in which the tests for code are written prior to
writing the code. In Test First Development, the test should initially fail (since nothing has been written)
and then pass after the code has been written.

For client side languages, JUnit (for Java), DUnit (for Delphi), NUnit and Harnesslt (for dotNet) all
provide Unit Test frameworks. The routines %ut and %utl, included in this patch, provide the same
capabilities for unit testing M code. Initially, the client side tests were console based (i.e., not windows,
but just text), and that is what %ut provides. For those who like pretty windows, there is an optional GUI
front end, MUnit_ OSEHRA .exe, available for use.

%ut - A Unit Tester For M Code 1 8/6/2014

3.1. Getting Started

If you are going to modify sections of your code, or refactor?, it is best to create a unit test for those areas
with which you want to work. Then the unit tests can be run as changes are made to insure that nothing
unexpected has changed. For modifications, the unit tests are then written to reflect the new expected
behavior and used to insure that it is what is expected. One of the major benefits of unit testing is finding
those changes in other parts of your code due to the changes that the modified code made.

The following is a very simple sample routine that covers everything necessary for generating a basic unit
test and includes examples of the various calls available:

XXXX jli/fo—oak — demo code for a unittest routine ;9/25/03 15:44
; makes it easy torun tests simply by running this routine and
; insures that %ut will be run only where itis present
| $T(EN"%"%ut)'="" D EN~%"%ut("XXXX")
Q

STARTUP ; optional entry point
; if present executed before any other entry point any variables
; or other work that needs to be done for any or all tests in the
; routine. Thisis run only once at the beginning of processing
Q

SHUTDOWN ; optional entry point
; if present executed after all other processing is complete to remove
; any variables, or undo work done in STARTUP.
Q
SETUP ; optional entry point
; if presentit will be executed before eachtest entry to setup
; variables, etc.
Q

TEARDOWN ; optional entry point
; if presentit will be executed after eachtest entry to clean up
; variables, etc.
Q

ENTRY1 ; Example for use of CHKEQ call to check twovalues
; code to generate a test, e.g. to check the sum of 1 and 1
S X=1,Y=1

1 Clean up the code without changing its behavior, frequently done prior to changing the behavior — see
Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Westford, MA: Addison Wesley
Longman, Inc.

%ut - A Unit Tester For M Code 2 8/6/2014

D CHKEQ"%"%ut(2,X+Y,"1+1 didn'tyield 2") ;

; usage of CHKEQ"%"%ut

; firstargumentis the expectedvalue

; secondargumentis the actual value

; third argumentis text to be displayed if the first argument
; and second argument are not equal.

; Multiple calls to CHKEQ™%"%ut may be made within one entry
; point. Each of these is counted as a test.

; Output for a failure shows the expected and actual values

ENTRY?2 ; Use of CHKTF call to check value for True or False
S ERRMSG="Current useris not an active user on this system"
D CHKTF"%"%ut($$ACTIVE"XUSER(DUZ)>0,ERRMSG)
; usage of CHKTF"%"%ut
; firstargumentis an expression evaluating to true or false value,
; second argumentis text to be displayed if the first argument
5 evaluates to false.
; Multiple calls to CHKTF"%"%ut may be made within one entry
; point. Each ofthese is counted as a test.
Q

ENTRY3 ; Use of CHKTF call to check values that should NOT be equal
; if you want to test something that should fail, use a NOT
S X=1,Y=8
D CHKTF"%"%ut(X'=Y,"indicated 1 and 3 are equal")
Q

ENTRY 4 ; @TEST — Use of the FAIL call to generate a failure message

S X=1+2 | X'=3 D FAIL"%"%ut("Systemis doing bad addition on 1+2") Q
; usage of FAIL"%"%ut

; the argumentis textindicating why the failure was identified

Q

; Other routine names to be included in testing are listed one per line

; with the name as the third semi—colon piece on the line and an

; optional description of what the routine tests as the fourth semi—

; colon piece, if desired this permits a suite of test routines to be

; run by simply starting one of the routine the names may be repeated

%ut - A Unit Tester For M Code 3 8/6/2014

; in multiple routines, but will only be included once. The first line
; without a third piece terminates the search for routine names (which
; is why this is above the XTROU tag).

XTROU ;
;i XXXY:description of what the routine tests
I XXXZ;
IXXXA
; Entry points for tests are specified as the third semi—colon piece,
; a description of what it tests is optional as the fourth semi—colon
; piece on aline. The firstline without a third piece terminates the
; search for TAGs to be used as entry points
XTENT ;
;;ENTRY1;tests addition of 1 and 1
;;ENTRY 2; checks active user status
;i ENTRY 3;
Q

Running XXXX as written above results in the following:

>D "XXXX

Referencedroutine XXXY not found.
Referencedroutine XXXZ not found.
Referencedroutine XXXA not found.

Ran 1 Routine, 4 Entry Tags
Checked 3 tests, with O failures and encountered O errors.
>

You will not normally see routines that aren't there referenced, since you would not include them. By
default, passed tests are shown only with a dot and the results are summarized at the bottom.

To illustrate a failure, change the code on line ENTRY+3 from (X'=Y) to (X=Y). Running XXXX shows
that the test now fails. The location of the tag and the comment for failure are shown in the order of the
tests:

>D XXXX

Referencedroutine XXXY not found.
Referencedroutine XXXZ not found.
Referencedroutine XXXA not found.

ENTRY3"XXXX - indicated 1 and 3 are equal

Ran 1 Routine, 4 Entry Tags

%ut - A Unit Tester For M Code 4 8/6/2014

Checked 3 tests, with 1 failure and encountered O errors.
>

Now change the code on line ENTRY1+3 so that S X=1,Y=1 becomes X=1,Y=1 (removing S<space>.
Running XXXX again identifies the error generated due to our typing, as well as continuing on to show
the failure we introduced at ENTRY3. The test at ENTRY2 still runs without a problem, as indicated by
the lone dot.

>D XXXX

Referencedroutine XXXY not found.
Referencedroutine XXXZ not found.
Referencedroutine XXXA not found.

ENTRY 1"XXXX — tests addition of 1 and 1 — Error: ENTRY1+3"XXXX:1, %DSM-E—
COMAND,
bad command detected

ENTRY3"XXXX —indicated 1 and 3 are equal
Ran 1 Routine, 4 Entry Tags

Checked 3 tests, with 1 failure and encountered 1 error.
>

If the code at ENTRY4+2 is now modified to S X=1+1 and running it causes the FAIL call to be used.

>D XXXX

Referencedroutine XXXY not found.
Referencedroutine XXXZ not found.
Referencedroutine XXXA not found.

ENTRY 1”°XXXX — tests addition of 1 and 1 — Error: ENTRY1+3"XXXX:1, %DSM -E-
COMAND,
bad command detected

ENTRY3™XXXX —indicated 1 and 3 are equal
ENTRY 4"XXXX — example of FAIL"%"%ut call — Systemis doing bad addition on 142
Ran 1 Routine, 4 Entry Tags

Checked 4 tests, with 2 failures and encountered 1 error.
>

%ut - A Unit Tester For M Code 5 8/6/2014

Restoring S<space> on line ENTRY1+3, and changing X=1 to X=2 and running it shows the output of
the CHKEQ call.

>d XXXX

Referencedroutine XXXY not found.
Referencedroutine XXXZ not found.
Referencedroutine XXXA not found.

ENTRY 17°XXXX — tests addition of 1 and 1 — <2> vs <3> — 1+1 didn'tyield 2

ENTRY 3"XXXX — indicated 1 and 3 are equal

ENTRY 4"XXXX — example of FAIL"%"%ut call — Systemis doing bad addition on 1+2
Ran 1 Routine, 4 Entry Tags

Checked 4 tests, with 3 failures and encountered O errors.
>

That covers the basics of generating a unit test routine to use with %ut. For sections of code performing
calculations, etc., this is all that will be required. For other cases, depending upon database interactions or
of input and output via something like the RPCBroker, other approaches to creating usable tests are
required. These 'objects,” which can be used for consistency in such units tests, are generally referredto as
'‘Mock Objects.'

3.2. M-Unit Test Dos and Don’ts

You do not want to include any code which requires user input. You want the tests to be able to run
completely without any user intervention other than starting them. By referencing other, related unit test
routines within the one that is started, you can build suites of tests that can be used to cover the full range
of your code.

3.3. M-Unit Test Definitions
Supported References in %ut are EN, RUNSET, CHKTF, CHKEQ, and FAIL.

The entry point EN"%ut(ROUNAME) starts the unit testing process. The argument is the name of the
routine where the testing should be started. That routine must have at least one TAG or entry point and
entry points are specified in the line following the tag XTENT as the third semi-colon piece on the line
OR it can have tags with @ TEST on the comment next to the tag.

The test is performed on a conditional value by calling the entry point CHKTF %ut(testval,messag) with
the first argument the conditional test value (true or false) and the second argument a message that should
be displayed indicating what failed in the test.

The test is performed by checking two values for equivalence using the entry point
CHKEQ"%ut(expected,actual,messag) with the first argument the expected value, the second argument
the actual value, and the third argument the message for display on failure.

%ut - A Unit Tester For M Code 6 8/6/2014

The entry point FAIL"%ut(messag) is used to simply generate a failure with the argument as the message
to be displayed for the failure.

For those who have problems keeping track of routine names for unit testing and which application they
are associated with, we have created a new file (M-UNIT TEST GROUP, #17.9001) which can be used to
maintain groups of unit test routines with the edit option "utMUNIT GROUP EDIT" (M-Unit Test Group
Edit). These may be run from an option ("utMUNIT GROUP RUN", Run M-Unit Tests from Test
Groups), from a Supported Reference [D RUNSET”%ut(setname)], or from the GUI client described
below (click the 'Select Group' button).

While the order of processing within M unit tests may actually be fairly constant, or at least appear to be
so, it is preferable to have the unit tests independent of the order in which they are run. Having
dependencies between tests can result in problems if the order were to change or if changes are made in
the test being depended upon. While STARTUP and SETUP tags are available, there are those who
recommend caution even in using them?.

4. MUnit.exe

The GUI MUnit application provides a visually interactive, rapid method for running unit tests on M
code. The GUI interface for M UNIT is available as a zip file (MUnit_OSEHRA.zip). It should be saved
and the file unzipped into any desired directory. If desired, a shortcut containing specifications for a
server and port (e.g, munit.exe s=server.myaddress.com p=9200) can be set up to start MUnit.exe.

e Start the application either double clicking on it or the shortcut.
e Select or Change the server/port specifications if necessary, and click on the 'Connect' button.

e After specifying the server address and port, the user can sign on or click the Select Group button
to select a unit test from the M-UNIT TEST GROUP file (#17.9001) as shown here (Figure 1).

2 Osherove, R. (2014). The Art of Unit Testing with Examples in C#, Second Edition. Shelter Island, NY:
Manning Publications Co., p. 34-35.

%ut - A Unit Tester For M Code 7 8/6/2014

13 M-Unit -

File Help
Server:
1. |MYSERVER.ADDRESS

2 Primary Test Routine:

3 List

Tags: Tests:

Testing Framework (OSEHRA) = =

Fort:
3502 Select Server Disconnect
Select Group
Connected
Exit
Erars: Failed: Elapsed

ALERTS
DEBUGGER

TESTS FOR UNIT TEST ROUTINES

Test Hierarchy | Failures/Ermors

Figure 1. Selection of an M-Unit test
You could also simply enter the name of a unit test routine in the Primary Test Routine field and click on

List. This will bring up a list of the routines and tags in the unit test run (Figure 2).

File Help
Server
1. |MYSERVERADDRESS

3. List
4. Run
Tags 19 Tests:

Port:

iz Select Server Disconnect

2. Selected Test Group: TESTSFORUNIT TESTR

Connected

Exit

Ermors Failed Elapsed

U3 -
T1-Test1
T2-Test2

Futed -

NS -

FEUNE -

T11-An @TEST Entry paint in Another Routine invoked thiough XTROU offsets -
T12 - AnXTENT offset entiy paint in Another Routine invaked through =TROU offsets

MAIM - - Test coverage calculations

MEWSTYLE - identify new style test indicator functionality
OLDSTYLE - identify ald style test indicator functionality
OLDSTYLY - identify old style test indicator 2

CHKCMDLN - check command line processing of Zutts
CHEGUI - check GUI processing of ZuttS
MEWSTYLE - test retumn of valid new style or @TEST indicators

Test Hierarchy | Failores/Enors

Figure 2. List of Unit tests selected for running

Clicking the Run button will run the unit tests, resulting in a bar which is green if all tests pass or red if
any failures or errors are encountered (Figure 3).

%ut - A Unit Tester For M Code

8/6/2014

File Help
Server Part:

1. MYSERVER.ADDRESS 9502 Select Server Discannect

2 Selected Test Group: TESTSFOR UNITTEST R Clear Group

3 List Connected
Tags: 19 Tests: 27 Emors: 0 Failed: 7 Elapsed 0.010

T2 - -Make sure Set-up uns A
T3 - - Make sure Teardown runs

T4 - Entry paint uzing =TMENT

T5 - Emor count check

TE - Succeed Entiy Paoint

T7 - Make sure we write to principal even though we are on another device

T&-IH10 starts with another device, write to that device az if it's the pricipal device

Ml CHECMDLM - check command line processing of Zutts
CHEKGUI - check GUI processing of Zutth
I MEWSTYLE - test retumn of valid new style or @TEST indicators

Test Higrarchy | Failures/Errors

Figure 3. The unit tests run with failures

If failures or errors are encountered, clicking on the Failures/Errors tab at the bottom of the listing opens a
display of specific information on the problems (Figure 4).

File Help
Server Paort:
1 MYSERVER.ADDRESS 9502 Select Server Dizconnect
2 Selected Test Group: TESTS FOR UNIT TESTR| | Clear Group
3 (L Connected
Exit
4
Tags: 19 Tests: 27 Emars: 0 Faled 7 Elapsed 0.010
TAG ROUTINE Eror Type Messzage
TE %utt1 FAILURE This is an intentional failure.
T5" 3utt1 FAILURE <05 vs <13 - By this point, we should have failled one test
T Zutt] FAILURE Intentionally throwing a failure
TH Zutt] FAILURE <03 v <2 - By thiz point, we should have failed two tests
Ta Zut FAILURE o failure message provided
CHECMDLM™2utte FAILURE #utth needs to be run from the tap to test CHECMDLN
CHEGUI Zutts FAILURE Zutth needs to be run from the tap to test CHEGUI
£ >
Test Hierarchy | Failures/Enors

Figure 4. Specifics on failed tests or errors

%ut - A Unit Tester For M Code 9 8/6/2014

In the case shown (Figure 4), all of the failures are intentional. Usually, failures and/or errors are not
intentional and the user can then edit the routine, and save the changes, then simply click on the Run
button again to see the effect of the changes.

To select a new unit test, the user would click on the Clear Group button, then again either select another
group or as shown in Figure 5, entering the name of a unit test routine and clicking on the List button.

File Help
Server Paort:
1. |MYSERVER.ADDRESS 3502 Select Server Dizconnect
2. Primary Test Routine Zuzaal Select Group
4 Fun E xit
Tags: Tests: Erars: Failed: Elapsed

Figure 5.Specification of unit tests by routine name

Again, clicking the Run button will run the unit tests (Figure 6). This figure shows the desired result, a
green bar meaning that all tests passed.

File Help
Server: Port:
1 |MYSERVER.ADDRESS 9502 Select Server Discannect

2 Primary Test Routing ZZUREAT Select Group

3 List Connected

4 Run il

Tags: 21 Tests: 127 Erors: 0 Faied: O Elapsed 7.213

Ll SENDSURO - send alert to surogate A
Al 22044 -

0 AUDAREFT - Check AUD cross-ref for simple send alert

0 SET3DELT - Setup 2 surogates, remove middle one

8 CHWGSURD - Change surogates between alerts

0 SENDREMY - Send to surogate and then remove

0 SENDRMWYZ - Send to user and sumagate then remove sunogate

0 RETURMO - Returr for uzer with no alerts to retum

H {0 DATESURO - Check for suniogatefs) in date range

aJll ZZUROAS -

~{l] MULTEDIT - Create 2 suros, delete first, then reset first

~{ll] DCYCLIC - Check for cyclic relationships with specific dates

-~ MANEDIT - handle expired manual or FM edit on top zem node

-~ MAMLIST - list generated after manual of FM edit

4 CYCLICT - problem with sequential or alternating surogates v

Test Hierarchy | Failures/Errors

Figure 6. Result from the second group of unit tests

5. Installation of the M-Unit Software

The installation software for the M—Unit Tools is usually available as either a PackMan message or as a
KIDS build file. The basic M—Unit Tools could be loaded from routines only if the usage will be at the

command line only.

%ut - A Unit Tester For M Code 10 8/6/2014

For installation from a PackMan message:
e open the message and, at the prompt to ‘Enter message action’, enter X for Xtract KIDS,

e it will then prompt to ‘Select PackMan Action’, enter 6 for ‘INSTALL/CHECK MESSAGE’ and
follow the subsequent prompts.

For installation from a KIDS build file:
e from the EVE (‘System Manager Menu’) menu, select:
o ‘Programmer Options’
o the KIDS (‘Kernel Installation & Distribution System’) menu
o and ‘Installation’, followed by 1 or ‘Load a Distribution,’

e at the prompt, enter the host file name (and if using Cache, the directories, if not in the current
namespace directory),

e then enter 6 (for ‘INSTALL/CHECK MESSAGE’) and follow the subsequent prompts.

Select Kernel Installation & Distribution System Option: INStallation

Select Installation Option: 1 Load a Distribution
Enter a Host File: MASH-0_1-0.KID

KIDS Distribution saved on Aug 05, 2014@19:45:42
Comment: M-Unit Functionality

This Distribution contains Transport Globals for the following Package(s):
Build MASH=*0.1*0 has been loaded before, hereis when:
MASH=*0.1*0 Install Completed
was loaded on Aug 04, 2014@12:54:12
OK to continue with Load? NO//y YES

Distribution OK!

Want to Continue with Load? YES//y YES
Loading Distribution...

MASH=*0.1+0
Use INSTALL NAME: MASH=*0.1*0 to install this Distribution.

Select Installation Option: install Package(s)
Select INSTALL NAME: MASH~*0.1+0 Loaded from Distribution Loaded from D
istribution 8/5/14@20:00:59

=> M-Unit Functionality ;Created on Aug 05, 2014@19:45:42

This Distribution was loaded on Aug 05, 2014@20:00:59 with header of
M-Unit Functionality ;Created on Aug 05, 2014@19:45:42
It consisted of the following Install(s):
MASH=*0.1*0

%ut - A Unit Tester For M Code 11 8/6/2014

Checking Install for Package MASH*0.1+0
Install Questions for MASH=*0.1x0
Incoming Files:
17.9001 M-UNIT TEST GROUP (including data)
Want KIDS to Rebuild Menu Trees Upon Completion of Install? YES// NO

Want KIDS to INHIBIT LOGONS during the install? YES// NO
Want to DISABLE Scheduled Options, Menu Options, and Protocols? YES// NO

100% X 25 50 75 X
Complete

Install Completed

Select Installation Option:

6. Running M-Unit Tests

Once the installation is complete, you can verify that the %ut test framework has been installed correctly
by running the supplied test routines.

To Execute the tests, enter the following commands at the VistA command prompt to run the tests:

D EN"%ut("%utt1")

T5”%utt1 — Error count check — This is an intentional failure.

T5"%utt1 — Error count check —Intentionally throwing a failure

CHKCMDLN"%utt6 — check command line processing of %utts — %utt6 needs to be
run

from the top to test CHKCMDLN

CHKGUI™%utté — check GUI processing of %utt5 — %utté needs to be run from the to
p to test CHKGUI

Ran 5 Routines, 17 Entry Tags
Checked 25 tests, with 4 failures and encountered O errors.

%ut - A Unit Tester For M Code 12 8/6/2014

D "%utt6

RUNNING COMMAND LINE UNIT TESTS FOR %utt5

Ran 1 Routine, 3 Entry Tags

Checked 4 tests, with O failures and encountered O errors.
NOW RUNNING UNIT TESTS FOR %utt6

Ran 1 Routine, 3 Entry Tags
Checked 11 tests, with O failures and encountered O errors.

The supplied tests can be run manually, but are also part of the OSEHRA VistA Automated Testing
harness. For instructions on how to acquire and run the tests via the OSEHRA harness see the online
documentation at:

e https://github.com/OSEHRA/VistA/blob/master/Documentation/ObtainingTestingCode.rst
e and https://github.com/OSEHRA/VistA/blob/master/Documentation/ObtainingTestingCode.rst
Then execute the following CTest command to run the tests:

ctest —R UNITTEST_Mash_Utilities

%ut - A Unit Tester For M Code 13 8/6/2014

https://github.com/OSEHRA/VistA/blob/master/Documentation/ObtainingTestingCode.rst
https://github.com/OSEHRA/VistA/blob/master/Documentation/ObtainingTestingCode.rst

