Introduction
What it does

This tool permits a series of tests to be written addressing specific tags or entry points within a project
and act to verify that the return results are as expected for that code. The significance of this is that,
when run routinely any time that the project is modified, it will act to indicate whether the intended
function has been modified inadvertently or whether the modification has had unexpected effects on
other functionality within the project. The set of unit tests for a project should run rapidly (usually
within a matter of seconds) and with minimal disruption for developers. Another function of unit tests
is that they indicate what the intended software was written to do. The latter may be especially useful
when new developers start working with the software or a programmer returns to a project after a
prolonged period.

The concept of Unit Testing was already in place before Kent Beck created a tool that he used in the
language Smalltalk, and then was turned into the tool Junit for Java by Kent Beck and Erich Gamma. This
tool for running specific tests on facets of a software project was subsequently referred to as xUnit,
since NUnit was developed for .NET developers, DUnit for Delphi developers, etc. MUnit is the
equivalent tool for M developers to use and was originally created in 2003.

Using M-Unit

The M-Unit functionality is contained in the %ut, %utl and %utcover routines. The code was originally
written by Joel Ivey when he was working as a developer for the Department of Veteran Affairs. The
code had input as suggestions by several other developers both inside and outside of the VA, including
Kevin Meldrum and especially Sam Habiel who made significant contributions to the current status
including modifications to the preinstall routine for Cache to improve setting the %ut namespace for
routines and globals to the current VistA partition. Current development is being continued for
OSEHRA.

%ut ;VEN-SMH/ILI - PRIMARY PROGRAM FOR M-UNIT TESTING ; 08/04/14 16:13
;;0.1;MASH UTILITIES;

; This routine and its companion, %utl, provide the basic functionality for
; running unit tests on parts of M programs either at the command line level
; or via the M-Unit GUI application for windows operating systems.

From a user's perspective the basic start for unit tests from the command line is the entry point ENA%ut,
the first argument is the name of the routine to be tested and is required, but the tag can take up to two
additional arguments: a verbose indicator and a BREAK indicator, both of these require a non-zero value
to activate them.

D EN~%ut(“ROUTINE_NAME")
or
D EN~%ut(“ROUTINE_NAME,VERBOSE,BREAK)

The command with a single argument will result in the unit tests being run and each successful test is
shown by a period ('.") followed by specification of the number of tags entered, the number of tests run,
the number of failures, and the number of errors encountered. Instead of the period for successes,
failures or errors are indicated by the tag and routine name for the specific test, a description of the test
if provided, and a message concerning the failure if provided or the line and routine at which the error
occurred. The verbose option will result in a listing of each test that is executed, which may make it
more difficult to identify problems if they have occurred. The BREAK option will result in termination of
the unit test as soon as a failure or error is encountered, this is not usually recommended, since only a
part of the unit tests (and potential problems) will have been examined. The unit tests will normally
continue even if errors are encountered.

The code written in a unit test routine has specific entry points that should indicate a specific set of
functionality being tested. The tag may have more than one test, but these should all focus on the same
aspect being tested. Originally specification of the tags and a description of the functionality being
tested by the tag testing were entered following an XTENT tag in the following manner.

XTENT ;
;;TEST1;Testing functionality for one feature
;; ANEW1;Testing another piece of functionality
;;ATHIRD;Testing still something else

More recently, an alternative method was added similar to the annotation used in C#, thanks to the
suggestion of Kevin Meldrum. The indicator @TEST is specified as the first string following the semi-
colon on the same line as the tag, and a description can then be added following this indicator.

TEST4 ; @TEST another test for different functionality

Since there will frequently be multiple routines with tests created to test a specific project, these can be
indicated in a manner similar to the original description of the entry tags, following a XTROU tag. The
following could be used to link additional test routines to a ZZUXQA1 test routine.

XTROU ;
;;ZZUXQA2
;;1ZZUXQA3
;;1ZZUXQA4

The other routines can also reference these as well, or additional related test routines. Each routine
would be included only once, no matter how many of the other routines reference it in this manner.

A test routine can use one of three types of calls for its tests, determining truth, equivalence, or simply
indicating failure for the test. In each of these a final argument can be used to specify information about
the specific test result.

Truth is tested by the command

DO CHKTFA%ut(TorF,message)

where 'TorF' is a value to be tested for true (passing the test) or false (failing the test).

Equivalence is tested by the command
DO CHKEQ”*%ut(expected,result,message)

where 'expected' is the value that is expected from the test, and 'result' is the value that was obtained
and should be equal to 'expected' if the test is to pass.

Failure already determined is specified by the command
DO FAILA%ut(message)

and is generally used when the processing has reached an area that it shouldn't be expected to reach
given the circumstances, and 'message' then describes the situation.

The MUnit functionality is set up to capture information on errors, and to continue processing the
remaining tests within the tag as well as additional tags.

There are four other tags that have meaning to the MUnit functionality - STARTUP, SETUP, TEARDOWN,
and SHUTDOWN. Frequently, to provide specific data to use for testing, it may be necessary to add data
which is totally temporary, either for all tests in one pass, or before each test is run.

The STARTUP tag specifies code that should be run once when the testing of a routine is starting up. If
multiple routines should use the same STARTUP code, they can have a STARTUP tag that then runs the
code in one of the routines. Its companion is SHUTDOWN, which if present, will be run only after all of
the tests have been completed within a routine. Again, if multiple routines should use the same
SHUTDOWN code they can each have a SHUTDOWN tag and then run the code in one of the routines.
This is a change from the prior version, where STARTUP was run only at the start of a unit test sequence
and SHUTDOWN only at the conclusion of all tests. However, this was found to cause problems if a suite
of multiple unit tests from different applications were being run (e.g., by creating a primary unit test
routine which referred to multiple test routines creating a suite of tests), and more than one of the
applications required its own STARTUP and SHUTDOWN code.

The SETUP tag specifies code that should be run before each test tag in a given routine is run, there
could be similar SETUP tags in other routines as well. Its companion is TEARDOWN which, if present, will
be run immediately after each test tag is processed.

It should be noted that care should be taken in using these four tags, since they may end up hiding
significant functionality from testing or result in problems later if changes are made to the tests (which
would then be converted into changes in the project related to the tests).

The extrinsic function (SSISUTESTA%ut) can be used to determine whether code is currently running

within a unit test or not. The value returned will be true if it is currently in a unit test and false if it is

not. This can be used within code that would likely be used under testing to determine whether user
interaction might be requested or not, or to set a default value for testing purposes.

An additional tag (CHKLEAKS~%ut) is available for checking for variable leaks as a part of a unit test. This
functionality can also be called outside of unit tests as well.

CHKLEAKS(%zuCODE,%zuLOC,%zulNPT) ; functionality to check for variable leaks on
executing a section of code
; %zuCODE - A string that specifies the code that is to be XECUTED and checked for leaks.
; this should be a complete piece of code
; (e.g., "S X=SSNEWAXLFDT()" or "D ENA%ut(""ROUNAME"")")
; %zuLOC - A string that is used to indicate the code tested for variable leaks
; %zulNPT - An optional variable which may be passed by reference. This may

; be used to pass any variable values, etc. into the code to be

; XECUTED. In this case, set the subscript to the variable name and the

; value of the subscripted variable to the desired value of the subscript.

; e.g., (using NAME as my current namespace)

; SET CODE="SET %zulNPT=SSENTRYAROUTINE(ZZVALUE1,ZZVALUE2)"

; SET NAMELOC="ENTRY~AROUTINE leak test" (or simply "ENTRYAROUTINE")
; SET NAMEINPT("ZZVALUE1")=ZZVALUE1

; SET NAMEINPT("ZZVALUE2")=2ZVALUE?2

; DO CHKLEAKS”A%ut(CODE,NAMELOC,.NAMEINPT)

; If part of a unit test, any leaked variables in ENTRYAROUTINE which result

; from running the code with the variables indicated will be shown as FAILUREs.
; If called outside of a unit test, any leaked variables will be printed to the

; current device.

The COV~%ut APl can be used to initiate coverage analysis of unit tests. Previously this functionality was
limited to the GT.M version of M (MUMPS), but the current release now provides support for coverage
analysis in Intersystems Cache as well. In the original release, this functionality was only available by
calling COV~A%utl, but the tag has been moved to %ut to make it more convenient to use. A couple of
newly added related APIs are described below as well. The COVA%ut API has three arguments

DO COV~A%ut (NAMESPACE,CODE,VERBOSITY)

where NAMESPACE specifies the routines to be included in the analysis. If the value does not
include an asterick at the end, then only the routine matching the specified name would be
included (e.g, "KBBPDEB1", would only include the routine KBBPDEB1 in the analysis). If the
NAMESPACE value ends in an asterick, then all routines starting with the initial characters will be
included in the analysis (e.g., KBBPD* would include all routines with names starting with KBBPD
in the analysis).

CODE specifies the code command that should be run for the analysis. Thus,
"DO EN"%ut(""KBBPUDE1"")" would run the routine KBBPUDE1 and any that it might call for the
coverage analysis.

VERBOSITY determines the amount of detail to be displayed. A value of 1 will provide only an
analysis of the lines covered out of the total number to be counted (non-code lines are not
included in the coverage analysis) for each routine in the analysis, as well as covered and totals
for all routines. A value of 2 will also include coverage data for each tag in the routines. A value

of 3 will provide the data provided by 1 and 2, but also will list each line for a tag that was not
covered during running of the routine(s), so that lines lacking coverage can be determined. A
value of -1 will return all data in globals for the calling application to evaluate and present.

The COVERAGE"%ut APl has been added to make it easier to analyze the coverage data while having it
omit the data on routines that shouldn't be included in the analysis (e.g., those routines which are only
unit test routines). It also permits different APIs to be called within the same analysis, so that coverage
can be better approximated if different pieces of code need to be called (e.g., an entry point to run unit
tests without the verbose flag, and another with the verbose flag, since both count as lines of code).
Again, this functionality is currently only available for GT.M system:s.

DO COVERAGE"%ut(NAMESPACE,. TESTROUS, . XCLUDE,VERBOSITY)
Where NAMESPACE functions in the same manner as described for COVA%ut (e.g., "%ut*")

TESTROUS is an array specifying the desired APIs that should be called and is passed by
reference. If the subscript is non-numeric, it will be interpreted as a routine specification to be
used. The values of the array may also be a comma separated list of APIs to be used during the
analysis. If an APl includes a 'A' (as either TAGAROU or AROU) then it will be run as DO TAGAROU
or DO AROU. If the API does not include a 'A' then it will be run as DO ENA%ut("ROU"). An array
could look like

SET TESTROUS(1)=""%ut,A%ut1"

SET TESTROUS("%utt1")="VERBOSE"%ut1"
which would cause the unit tests DO *%ut, DO A%utl1, DO ENA%ut("%utt1"), and
DO VERBOSE”%utl to be run.

XCLUDE is an array specifying the names of routines that should be excluded from the coverage
analysis, and can also be specified as either arguments or as a comma separated list in the value.
Thus,

SET XCLUDE("%utt1")="%utt2,%utt3,%utt4,%utt5,%utt6,%uttcovr"
would result in only the functioning routines in %ut* being included in the coverage analysis.

The VERBOSITY argument can have the 0 through 3 values as described above.

The MULTAPISA%ut API has been added to provide capabilities to run multiple sets of unit tests in the
same manner as with the COVERAGE"%ut API, but it does not attempt to perform any coverage
analyses. It has a single argument is passed by reference and has the same capabilities as TESTROUS
above. Usage is as

DO MULTAPISA%ut(.TESTROUS)

The new GETUTVAL"%ut and LSTUTVAL"%ut APIs can be used to generate cumulative totals If a routine
with code to run multiple unit tests is created by calling the GETUTVAL"%ut API after each test passing a
variable (which can be undefined initially) by reference to create an array containing a cumulative total

for the tests. At the conclusion, the LSTUTVAL"%ut APl can then be called to print the cumulative totals.

DO GETUTVAL"%ut(.TESTSUM)
Then

DO LSTUTVAL*%ut(.TESTSUM)
Will present the summary listing of values for the tests.

The GUI MUnit application provides a visually interactive rapid method for running unit tests on M code.

.1 M-Unit - Testing Framework (OSEHRA) = =
File Help
Server Part:
1. MYSERVER ADDRESS 9502 Select Server Dizconnect
2. Primary Test Rotine:
I
3 (Lt Connected
a Fun Exit
Tags: Tests: Errors: Failed: Elapsed

ALERTS
DEBUGGER
TESTS FOR UNIT TEST ROUTINES

Test Higrarchy | Failures/Ermors

Figure 1. Selection of an M-Unit test

After specifying the server address and port, the user can sign on and then click the Select Group button
to select a unit test from the M-UNIT TEST GROUP file (#17.9001) as shown here (Figure 1), or simply
enter the name of a unit test routine in the Primary Test Routine field and click on List. This will bring up
a list of the routines and tags in the unit test run (Figure 2).

File Help
Server: Port:
4. |MYSERVER.ADDRESS | |9502

1 ‘Selecl Server" ‘ Disconnect'

2. Selected Test Group: ‘IE,STE F?f‘HNETFfT f“ ‘ Clear Group ‘

3 Connected
4. Run &
Tags: 28 Tests: Erors: Failed: Elapsed
OLDSTYLE - identify old style test indicator functionality ~

OLDSTYL1 - identify old style test indicator 2
BADCHKED - CHKEQ should fail on unequal value
BADCHKTF - CHKTF should fail on false value
BADERROR - throws an eror on purpose

CALLFAIL - called FAIL to test it

LEAKSOK - check leaks should be ok

LEAKSBAD - check leaks with leak

NYLDARG - check invalid arg in CHKEQ

i ISUTEST - check ISUTEST inside unit test

e ZUMB-

CHKCMDLN - check command line processing of Zutts
CHKGUI - check GUI processing of Zutts

CKGUISET - check list of tests returned by GUISET
NEWSTYLE - test return of valid new style or @TEST indicators

Test Hierarchy | Failures/Ermors

Figure 2. List of Unit tests selected for running

Clicking the Run button will run the unit tests, resulting in a bar which is green if all tests pass or red if
any failures or errors are encountered (Figure 3).

Help
Sglvgr: - ort:
|MYSERVER ADDRESS | [

Select Server Disconnect |

[Feeteenp T TeeT Bl | 1
Selected Test Group: | 1ESTS FORUNITTEST R | Clear Group |

i st | Connected

Tags: 19 Tests: 27 Emors: 0 Failed: 7 Elapsed 0.010

- - Make sure Set-up runs

- - Make sure Teardown runs

- Entry point using XTMENT

- Error count check

- Succeed Entry Point

- Make sure we wiite to principal even though we are on another device

- If 10 starts with another device, wiite to that device as if it's the pricipal device

Ml CHKCMDLN - check command line processing of Zutts
CHKGUI - check GUI processing of ZuttS
ol NEWSTYLE - test retumn of valid new style or @TEST indicators

| Test Hierarchy w Failures/Errors |

Figure 3. The unit tests run with failures

If failures or errors are encountered, clicking on the Failures/Errors tab at the bottom of the listing
opens a display of specific information on the problems.

File Help
Server: Port:
1z MYSERVER-ADDHESS 9502 | Select Server | Disconnect
2. Selected Test Group: TESTS FOR UNIT TESTR| Clear Group |
3 List Connected
Exit
4.
Tags: 28 Tests: 31 Emors: 1 Failed: 7 Elapsed 0.023
TAG ROUTINE Eror Type Message
T5 %uttl FAILURE This is an intentional failure.
T5 %utt! FAILURE Intentionally throwing a failure
BADCHKEQ "%utts FAILURE <45 vs<3> - SET UNEQUAL ON PURPOSE - SHOULD FAl
BADCHKTF %utt5 FAILURE SET FALSE (0) ON PURPOSE - SHOULD FAIL
BADERROR " %uttS ERROR <UNDEFINED>BADERROR+6"%utt5 *Q
CALLFAIL"ZuttS FAILURE Called FAIL to test it
LEAKSBAD “%utts FAILURE LEAKSBAD TEST -XNOT SPECIFIED VARIABLE LEAK: X
NYLDARG1 %uttS FAILURE NOWVALUES INPUT TO CHKEQ"%ut - no evaluation possib
< >
Test Hierarchy | Failures/Erors

Figure 4. Specifics on failed tests or errors

In the case shown (Figure 4), all of the failures are intentional. Usually, failures and/or errors are not
intentional and the user can then edit the routine, and save the changes, then simply click on the Run
button again to see the effect of the changes.

To select a new unit test, the user would click on the Clear Group button, then again either select
another group or as shown in Figure 5, entering the name of a unit test routine (ZZUXQA1 and related
routines are not included with the M-Unit Test code and is shown only as an example) and clicking on
the List button.

File Help
Server: Part:
1. |MYSERVERADDRESS 9502 Select Server Disconnect

2. Primary Test Routine ZZUaA| Select Group

4 Fun et

Tags: Tests: Errars: Failed: Elapzed

Figure 5. Specification of unit tests by routine name

Again, clicking the Run button will run the unit tests (Figure 6). This figure shows the desired result, a
green bar meaning that all tests passed.

File Help
Server Port:
1 |MYSERVER.ADDRESS 502 Select Server Discannect

2. Primary Test Routine ZZUXRAL Select Group

3 Lk Connected
q Fiun E it

Tags: 21 Tests: 127 Emors: O Faled 0O Elapsed 7.213

L SEMDSURD - send alert to surogate ~
1 Z2UX0A4 -
I AUDHREFT - Check AUD cross-ref for simple send alert
SET3DELT - Setup 3 surrogates, remave middle ane
= CHMGSURD - Change surrogates bebween alerts
8 SEMDREMY - Send to surrogate and then remove
-l SENDRMVY2 - Send to user and surogate then remove surrogate
-l RETURMO - Return for user with no alerts o retumn
I DATESURD - Check for surogatels] in date range
I ZZUKX0AS -
0 MULTEDIT - Create 2 suros. delete first, then reset first
DCYCLIC - Check for cyclic relationships with specific dates
MMAMEDIT - handle expired manual or FM edit on top zero node
fAMLIST - list generated after manual of Fi edit
-l CYCLICT - problem with sequential or alternating surogates v

Test Hierarchy | Faiures/Ermors

Figure 6. Result from the second group of unit tests

The results of both of these groups of tests (%uttl and ZZUXQA1 and their related routines) run at the
command line using are shown in Figure 7.

R =~ — .
Cache TRM:18896 (TRYCACHE) | T BRI

Eile Edit Help
D EN“%ut ("%uttl™)

T5"%uttl - Error count check — This is an intentional failure.

TS5~%uttl - Error count check - Intentionally throwing a failure

r - rest I.-———————————————————— [CE]
T2 — Test 2. ——————————————— [OKE]

Ran 1 Routine, 2 Entry Tags

Checked 2 tests, with 0 failures and encountered 0 EerrorsS.........

BADCHEER %utt> — CHEEQR should fail on unequal wvalue — <4> wvs <3> - SET UNEQUAL
CN PURPOSE — SHOULD FATL

BADCHETF™%utt>
SHOULD FAIL

CHETF should fail on false wvalue - SET FALSE (0) ©ON PURPOSE -

BADERRCR™%utt> — throws an error on purpose — Error: <UNDEFINED>BADERRCR+&"%utt
S Y0
CALLFAIL"%utt5 - called FAIL to test it — Called FAIL to test it

LEAESBAD"3%utt5 — check leaks with leak — LERESEAD TEST - X NOT SPECIFIED VARIAEL
E LE&FK: X

MVLDARG1™%utt5S — check invalid arg in CHEER - NC VALUES INPUT TC CHEEQ %ut — no
evaluation possible

Ran & Routine=, 37 Entry Tags
Checked 113 tests, with 7 failures and encountered 1 error.
WISTR>

Figure 7. Command line unit tests for %uttl

The results of the single %uttl unit test routine (and its related routines) run with the VERBOSE option,
that some people prefer, specified permits the individual tests and their results to be seen, but makes
the results more difficult to interpret (Figure 8).

Cache TRM:18896 (TRYCACHE)

File Edit Help

[VISTA>D EN~%ut ("futtl”, 1) -
Tl - - Make sure Start-up Ran. [OK]

T2 - - Make sure Set-up runs. [OK]

T3 - - Make sure Teardown runs. [OK]

T4 - Entry point using XTMENT. [OK]

T5 - Error count check
T5*%uttl - Error count check - This is an intentional failure.

T5~%uttl - Error count check - Intentionally throwing a failure

. [FAIL]
T6 - Succeed Entry Point... [OK]

T7 - Make sure we write to principal even though we are on another device..[OQK]
I8 - If IC starts with another device, write to that device as if it's the prici
pal device. [OK]
COVRPTGL - coverage report returning global . [OK]
T11 - An @TEST Entry point in Bnother Routine invoked through XTROU offsecs. [CK]
T12 - An XTENT offset entry point in Another Routine invoked through XTROU offse

ts. [OK]
MATN - - Test coverage calculations

T1 - Test 1. [OK]

T2 - Test 2. [OK]

Ran 1 Routine, 2 Entry Tags ke

Cache TRM:18896 (TRYCACHE)
File Edit Help

Checked 2 tests, with 0 failures and encountered 0 errors.. [CK] -
NEWSTYLE - identify new style test indicator functionality [OK]
OLDSTYLE - didentify old style test indicator functionality.. [OK]
OLDSTYL1 - identify old style test indicator 2. [OK]
BADCHKEQ - CHEKEQ should fail on unegual value
BADCHRKEQ"%uttS — CHEKEQ should fail on unegual value - <4> vs <3> - SET UNEQUAL
ON PURPOSE - SHOULD FRAIL

[FAIL]

BADCHRIF - CHEIF should fail on false value
BADCERTF~%uttS — CHKIF should fail on false value - SET FALSE (0) CN PURPOSE -
SHOULD FAIL

[FAIL]
BADERROR - throws an error on purpose
BADERROR"%uttS - throws an error on purpose - Error: <UNDEFINED>BADERRCR+6&~%utt
5 *Q

[FRIL]
CALLFATIL - called FATL to test it
CALLFATL"%utt5 — called FATL to teat it - Called FATL to tesat it

[FATL]
LERKSOK - check leaks should be ok [OK]

LEAKSBAD - check leaks with leak
LERKSBAD"%uttS - check leaks with leak - LEAKSBAD TEST - X NOT SPECIFIED VARIABL
E LERK: X

[FAIL] =~

Cache TRM:18896 (TRYCACHE) { J

File Edit Help

[NWWLDARG1 - check invalid arg in CHEEQ -
[NWWLDARG1"%utt5 - check invalid arg in CHEEQ - NO VALUES INFUT TO CHEEQ"%ut - no
evaluation possible

[FAIL]
ISUTEST - check ISUTEST inside unit test. [CK]
ISETROUS — - generate array with indices of routines to exclude...... - [CK]
ICHECMDLN - check command line processing of %uttS-—-—-——--ooo——— [CK]
ICHEGUI - check GUI processing of %utts [CK]
ICKGUISET - check list of tests returned by GUISET [CK]
[NEWSTYLE - test recturn of valid new style or @TEST indicators.. [CK]
RTNANAL — - routine analysis... [CK]
ICOVCOV - - check COVCOV - remove seen lines......———————————————-m——— [CK]
COVRPTccnn. [OK]
ICOVRPTLS - - coverage report returning text in global.........0.——————— [CK]
TRIMDATA - - TRIMDATA in %utcover.. [OK]
[LIST - - LIST in %utcCOvVer...... [CK]
ICACHECOV - - set up routine for amalysis in globals..-—-—————-—————e———o [OK]
[LINEDATA - - convert code line to based on tags and offset, and identify active
lcode linesS....c.ievesass [OK]
TOTAGS - - convert from lines of code by line number to lines ordered by tag, 1i
ne from tag, and only not covered.......ese. [OK]

Ran € Routines, 37 Entry Tags
IChecked 113 tests, with 7 failures and encountered 1 error. =

Figure 8. Command line unit tests for %utt1l with VERBOSE option

On-going/Future plans for M-Unit functionality:

As a unique program in the realm of M[UMPS] code testing but following in the footsteps of other well
established unit test frameworks, the M-Unit software will continue to move forward and improve (as the
@TEST indicator was added based on changes in NUnit and JUnit). M-Unit will likely branch out and
expand the types of checks that are available, matching the functions of other established test beds.

Summary

M-Unit provides a tool which can assist in writing and modifying routines in M projects with an aim to
minimizing flaws in development and in the ongoing life of the software.

