Introduction
What it does

Thistool permits a series of tests to be written addressing specifictags or entry points within a project
and act to verify that the return results are as expected forthat code. The significance of thisis that,
when run routinely any time that the projectis modified, it will actto indicate whetherthe intended
function has been modified inadvertently or whetherthe modification has had unexpected effects on
otherfunctionality within the project. The set of unittestsfora projectshould runrapidly (usually
within amatter of seconds) and with minimal disruption for developers. Anotherfunction of unittests
isthat they indicate what the intended software was written to do. The latter may be especially useful
when new developers start working with the software ora programmerreturnstoa project aftera
prolonged period.

The concept of Unit Testing was already in place before Kent Beck created atool that he usedin the
language Smalltalk, and then was turned into the tool JunitforJava by Kent Beck and Erich Gamma. This
tool for running specifictests on facets of a software project was subsequently referred to as xUnit,
since NUnit was developed for .NET developers, DUnit for Delphi developers, etc. MUnitisthe
equivalenttool for M developers to use and was originallycreatedin 2003.

Using M-Unit

The M-Unit functionalityis containedin the %utand %utl routines. The code was originally written by
Joel lvey when he was working as a developer for the Departme nt of Veteran Affairs. The code had
input as suggestions by several otherdevelopers bothinside and outside of the VA, including Kevin
Meldrum and especially Sam Habiel who made significant contributions to the current status. Current
developmentis being continued for OSHERA via VistA Expertise Network.

%ut ;VEN-SMH/JLI - PRIMARY PROGRAM FOR M-UNIT TESTING ; 08/04/14 16:13
;;0.1;MASH UTILITIES;

; This routine and its companion, %utl, provide the basicfunctionality for
; running unittests on parts of M programs eitheratthe command line level
; orvia the M-Unit GUI application for windows operating systems.

From a user’s perspectivethe basicstart forunittests from the command line is the entry point EN*%ut,
the firstargumentisthe name of the routine to be tested and isrequired, but the tag can take up to two
additional arguments: averbose indicatorand a BREAK indicator, both of these require anon-zerovalue
to activate them.

D ENA%ut(“ROUTINE_NAME”")
or
D EN”%ut(“ROUTINE_NAME,VERBOSE,BREAK)

The command with a single argumentwill resultin the unittests beingrun and each successful testis
shown by a period (“.") followed by specification of the number of tags entered, the number of tests run,
the number of failures, and the number of errors encountered. Instead of the period forsuccesses,

failures orerrors are indicated by the tag and routine name forthe specifictest, adescription of the test
if provided, and a message concerningthe failure if provided or the line and routine at which the error
occurred. The verbose option will resultin alisting of eachtestthat is executed, which may make it
more difficult toidentify problems if they have occurred. The BREAK option will resultin termination of
the unittestas soonas a failure orerror isencountered.

The code writtenina unittestroutine has specificentry points that should indicate aspecificset of
functionalitybeingtested. The tag may have more than one test, but these should all focus on the same
aspectbeingtested. Originally specification of the tags and a description of the functionality being
tested by the tag testingwere entered followingan XTENT tag in the following manner.

XTENT ;
;;TEST1;Testing functionality for one feature
;; ANEW1;Testing another piece of functionality
;;ATHIRD; Testing still something else

More recently, an alternative method was added similarto the annotation used in C#, thanks to the
suggestion of Kevin Meldrum. The indicator @TEST is specified as the first string following the semi-
colonon the same line as the tag, and a description canthen be added following thisindicator.

TEST4 ; @TEST anothertestfor different functionality

Since there will frequently be multiple routines with tests created to testa specific project, thesecan be
indicated inamannersimilarto the original description of the entry tags, followinga XTROU tag. The
following could be used to link additionaltest routines to a ZZUXQA1 testroutine.

XTROU ;
5, ZZUXQA2
;;ZZUXQA3
;;1ZZUXQA4

The other routines can also reference theseas well, oradditional related test routines. Each routine
would beincluded only once, no matter how many of the otherroutinesreferenceit.

A test routine can use one of three types of calls for its tests, determining truth, equivalence, or simply
indicatingfailureforthe test. In each of these a final argument can be used to specify information about
the specifictestresult.
Truth is tested by the command

DO CHKTFA%ut(TorF,message)
where ‘TorF’ isa value to be tested fortrue (passing the test) orfalse (failing the test).

Equivalence istested by the command

DO CHKEQ %ut(expected,result,message)

where ‘expected’ is the value thatis expected from the test, and ‘result’ isthe value that was obtained
and should be equal to ‘expected’ if the testisto pass.

Failure already determined is specified by the command
DO FAILA%ut(message)

and is generally used when the processing has reached an areathat it shouldn’t be expected to reach
given the circumstances, and ‘message’ then describes the situation.

The MUnit functionality is set up to capture information on errors, and to continue processingthe
remainingtests within the tagas well as additional tags.

There are fourothertags that have meaningtothe MUnit functionality - STARTUP, SETUP, TEARDOWN,
and SHUTDOWN. Frequently, to provide specificdatato use for testing, it may be necessarytoadd data
whichistotally temporary, eitherforall testsin one pass, or before each testisrun.

The STARTUP tag specifies code that should be run once when the testingis startingup. At mostonlya
single STARTUP tag should be presentin atestsfor a given project. Itscompanionis SHUTDOWN, which
if present, will be run only afterall of the tests have been completed. Again, there shouldonlybea
single SHUTDOWN tagin a project.

The SETUP tag specifies code that should be run before each testtagina givenroutineisrun, there
could be similar SETUP tags in otherroutines as well. Itscompanionis TEARDOWN which, if present, will
be run immediately aftereach testtagis processed.

It should be noted that care should be takenin using these four tags, since they may end up hiding
significant functionality fromtesting orresultin problems laterif changes are made to the tests (which
wouldthen be convertedinto changesinthe projectrelated to the tests).

An additional tag (CHKLEAKS”%ut)is available for checking for variableleaks eitheras a part of a unit
test, or it can be called outside of unittestsas well.

CHKLEAKS(%zuCODE,%zuLOC,%zulNPT) ; functionality to check forvariable leaks on
executingasection of code

; %zUCODE - A string that specifies the code thatis to be XECUTED and checked forleaks.

; thisshould be a complete piece of code

; (e.g., "SX=SSNEWAXLFDT()" or "D ENA%ut(""ROUNAME"")")

; %zuLOC - A stringthat isused to indicate the code tested forvariable leaks

; %zulNPT - An optional variable which may be passed by reference. This may

; be usedto pass any variable values, etc. into the code to be

; XECUTED. In thiscase, setthe subscripttothe variable name and the

; value of the subscripted variable to the desired value of the subscript.

; e.g., (using NAME as my current namespace)

; S CODE="S %zulNPT=SSENTRYAROUTINE(ZZVALUE1,ZZVALUE2)"

; S NAMELOC="ENTRYAROUTINE leak test" (orsimply "ENTRYAROUTINE")

; S NAMEINPT("ZZVALUE1")=ZZVALUE1

; S NAMEINPT("ZZVALUE2")=2ZVALUE2

D CHKLEAKS"%ut(CODE,NAMELOC, .NAMEINPT)

; If part of a unittest, anyleaked variablesin ENTRYAROUTINE which result
from runningthe code with the variables indicated will be shown as FAILUREs.

; If called outside of aunittest, any leaked variables will be printed to the
; current device.

The GUI MUnit application provides avisually interactive rapid method for running unittests on M code.

q M-Unit - Testing Framework (OSEHRA) = =
File Help
Server Foit
1. |MYSERVER.ADDRESS 9502 Select Server Dizconnect
2. Primary Test Routine:
]
3 List Connected
4 Fun Exit
Tags: Tests: Errors: Failed: Elapsed

ALERTS
DEBUGGER
TESTS FOR UNIT TEST ROUTINES

Test Higrarchy | Failures/Enors

Figure 1. Selection of an M-Unit test

Afterspecifying the serveraddress and port, the usercan sign on or click the Select Group buttonto
selectaunit testfromthe M-UNIT TEST GROUP file (#17.9001) as shown here (Figure 1), orsimply enter
the name of a unittestroutine inthe Primary Test Routine field and click on List. This will bringupa list
of the routines and tagsin the unittestrun (Figure 2).

File Help

Server. Fart:
q MSERYER ADDRESS 9502 Select Server Disconnect
2. Selected Test Group: TESTS FOR UNIT TEST R
3 List Connected

Tags: 19 Tests: Ermors: Failed: Elapsed

T11 - &n @TEST Entry point in Anather Foutine invoked through XTROU offsets ~
T12 - & <TENT offset entry point in Another Routine invoked through XTROU oftsets
U3 -
T1-Testd
T2-Test2

Futtd -
o MAIN - - Test coverage calculations
HUrS -
NEWSTYLE - identify new style test indicatar functionaliby
OLDSTYLE - identify ald style test indicator functionality
« DLDSTYLT - identifty old style test indicatar 2
HuttE -
CHKCMDLN - check command line processing of Zult
CHEGUI - check GUI processing of Zutth
MEWSTYLE - test return of valid new style or BTEST indicatars

Test Higrarchy | Failures/Erors

Figure 2. List of Unittests selected forrunning

Clickingthe Run button will runthe unittests, resultinginabar whichis green if all tests pass or red if
any failures orerrors are encountered (Figure 3).

Help

Server Pt
1 MSERYVER.ADDRESS 9502 Select Server Disconnect
2 Selected Test Group: TESTS FORUNITTESTR| | gl Group
3 List Connected
s =
Tags: 19 Tests: 27 Errors: 0 Faled: 7 Elapsed 0.010

- - Make sure Set-up runz ~
- - Make sure Teardown rung

- Entry point using X TMENT

- Error count check

- Succeed Entry Paint

- Make sure we wiite to principal even though we are on another device

- IF 10 starts with another device, vwrite o that device az if it's the pricipal device

CHECMDLM - check command line processing of Zutt
CHEGUI - check GUI pracessing of Zutth
MEWSTYLE - test retumn of valid new style or RTEST indicatars

Test Hierarchy | Faiures/Emors

Figure 3. The unittestsrun withfailures

If failures orerrors are encountered, clicking on the Failures/Errors tab at the bottom of the listing
opensa display of specificinformation on the problems.

File

Help
Server: Part:
MYSERVER.ADDRESS 3502 Select Server Disconnect
Selected Test Group: 1015 FORUNITTEST R | Clear Group

(L Connected

Aun E =it
Tagz 19 Tests: 27 Ermors: D Failed: 7 Elapzed 0.010

TAG"ROUTINE Erar Type Message

T %utt1 FAILURE Thig is an intentional failure.

TH %uttl FaILURE <03 wz <13 - By thiz point, we should have failed one test
TE Zutt] FAILLRE Intentionally throwing a failure

TE Zutt] FAILLRE <0 vz <2» - By this point, we should have failed bwo tests
T& Zuttl FAILLRE no failure mezzage provided

CHECMDLM “%0tE FAILLRE Ut needs to be run from the top to test CHEKCMDLM
CHEGUI Zutts FAILURE uttE needs to be run from the tap to test CHEGUI

Test Hierarchy | Failures/Errors

In the case shown (Figure 4), all of the failures are intentional. Usually, failuresand/orerrorsare not
intentionalandthe usercan then edit the routine, and save the changes, then simply click on the Run

Figure 4. Specificsonfailedtestsorerrors

button again to see the effect of the changes.

To selecta new unittest, the user would click onthe Clear Group button, then again eitherselect
anothergroup or as shownin Figure 5, entering the name of a unittest routine and clicking on the List

button.

File Help
Server Fort:
MYSERVER.ADDRESS 9502 Select Server Disconnect
Prirmary Test Routing ZUxaa| Select Group
Run Eat
Tags: Tests: Errors; Failed: Elapzed

Again, clickingthe Run button will run the unit tests (Figure 6). This figure showsthe desiredresult, a

Figure 5. Specification of unittests by routine name

greenbar meaningthatall tests passed.

Eile Help

Server: Pont:
1. MYSERVER.ADDRESS 9502 Select Server Dizconnect
2 Frimary Test Routing | 227041 Select Group
3 Lk Connected
q Fiun Exit
Tags: 21 Tests: 127 Emrors: 0 Failed: O Elapsed 7.213
‘]l SENDSURD - send alert to surrogate S

Al Z2K0A4 -
[l AUDEREFT - Check AUD cross-ref for simple send alert
SET3DELT - Setup 3 sunogates, remaove middle one
CHMGSURD - Change sunogates between alerts
SEMDREMY - Send to surrogate and then remove
SEMDRMYZ - Send to user and surrogate then remove surrogate
-l RETURMO - Return for user with no alerts to retum

I DATESURD - Check for surrogate(s) in date range
ZZURQAS -
-l MULTEDIT - Create 2 suos, delete first, then reset fist
-l DCYCLIC - Check for cyclic relationships with specific dates
MAMEDIT - handle expired manual or Fi edit on top zero node
MAMLIST - list generated after manual of FM edit
-l CYCLICT - problem with sequential or alternating surogates

Test Hierarchy | Falures/Emors

Figure 6. Resultfrom the second group of unittests

The results of both of these groups of tests (%uttland ZZUXQA1 and theirrelated routines) run atthe
command line usingare showninFigure 7.

File Edit Help
ISTR> ~

ISTA>D EN~%ut ("$uttl"™)
5~%uttl - Error count check - This is an intentional failure.

57%uttl - Error count check - Intentionally throwing a failure
CHECMDLN~%utté - check command line processing of %utt5 - %utté needs to be run
from the top to test CHEKCMDLN

CHKGUI"%utté - check GUI processing of %utt5 - %futté needs to be run from the to
to test CHEGUIL

Ran 5 Routines, 17 Entry Tags
Checked 25 tests, with 4 failures and encountered 0 errors.
TISTA>D EN~%ut ("ZZUXGR1")

Ran 5 Routines, 21 Entry Tags
Checked 127 tests, with 0 failures and encountered 0 errors.
ISTA> hd

Figure 7. Command line unittestsfor%uttl

The results of the single %uttlunittestroutine (andits related routines) run with the VERBOSE option,
that some people prefer, specified permits the individualtests and theirresults to be seen, but makes
the results more difficultto interpret (Figure 8).

Edit Help
-~

[VISTA>D EN"%ut ("$uttl",l) ; add verbose argument
Tl - - Make =sure S5tart-up Ran. [OK]
T2 - - Make sure Set-up runs. [OK]
T3 — — Make sure Teardown runs. [OK]
T4 - Entry point using XTMENT. [OK]
TS5 - Error count check
T5"%uttl - Error count check - This is an intentional failure.
[TS"%uttl — Error count check - Intentionally throwing a failure
. [FAIL]
T6 - Succeed Entry Point... [OK]
T7T — Make sure we write to principal even though we are on another device..[OK]
T8 - If IC starts with another device, write to that device as if it's the prici
pal device. [OK]
T11 - An @TEST Entry point in Another Routine invoked through XTROU offsets. [OK]
T12 - An XTENT offset entry point in Another Routine invoked through XTRCOU offse
ts. [OK]
MAIN - - Test coverage calculation [OK]

WSTYLE - identify new style test indicator functionality.--—-——-———-———- [OK]
LDSTYLE - identify old style test indicator functionality..--—-———-———- [OK] .
LDSTYL1 - identify old style test indicator 2. [OK]
CHKCMDLN - check command line processing of %futtS w

CHEKCMDLN"%utté - check command line processing of %utt5 - %utté needs to be run
ifrom the top to teat CHECMDLN

[FAIL]

CHEGUI - check GUI processing of %ucts

CHEGUI"%utté - check GUI processing of %utts - %utté needs to be run from the to
to test CHEGUI

[FAIL]
WSTYLE - test return of wvalid new style or @TEST indicators...----———- [CK]

Ran 5 Routines, 17 Entry Tags

Checked 25 tests, with 4 failures and encountered 0 errors.
ISTA>]

Figure 8. Command line unittests for %uttlwith VERBOSE option

Summary

M-Unit provides atool which can assistin writingand modifying routinesin M projects with an aimto
minimizing flawsin developmentandinthe ongoinglife of the software.

