

Identity Functions
FASC-N Open Source Description

Russell Davis
12/2/2011

ii

Contents
Preface .. 1

From FIPS 201-1 .. 1

From SP 800-73 ... 2

Program Descriptions .. 2

Agency Code ... 2

Convert Character ... 2

Credential Number ... 3

Credential Series ... 4

Expand FASC-N .. 5

Individual Credential ... 6

Organizational Category ... 6

Organizational Identifier ... 7

Personal Identifier ... 8

Character Return ... 8

Number Return ... 8

Person Organization Association .. 9

System Code .. 9

To Integer Conversion ... 10

Test Fixtures .. 11

fascn .. 11

fascnOut .. 12

Longitudinal Redundancy Character ... 12

fascnParse ... 13

Source Code Listing ... 13

Agency Check .. 15

Outputs ... 15

Source Code .. 16

1

Preface
Key (privileged) personnel within the VA and DoD will have a valid identification cards that meets the requirements in
Homeland Security Presidential Directive 12 (HSPD-12), “Policy for a Common Identification Standard for Federal
Employees and Contractors.” Direct results of HSPD-12 are Common Access Card (CAC)/Personal Identity Verification
(PIV) cards.

Furthermore, the Department of Defense is using EDI-PI as a unique personal identifier. This value is located in multiple
locations within the CAC/PIV card within the Federal Agency Smart Credential Number (FASC-N). In turn, the FASC-N is
located in the Cardholder Unique Identifier (CHUID) and as part of the authentication digital certificate. What’s more,
the CHUID is available as a free read from the contactless ISO 14443 interfaces as well as the contact interface.
Consequently, the CHUID/FASC-N could be extracted hands free or through the contact interface. Additionally, the
digital certificate used for CAC/PIV login includes the FASC-N.

Thinking outside the box, a surgeon could authenticate inside an operating room using the contactless interface. One
would need only to move the CAC/PIV to a configured ISO 14443 reader. Similarly, a user logging into a system using the
contact interface could be identified from the digital certificate used.

The FASC-N contains information that identifies the Federal agency that issued the CAC/PIV card. This is not limited to
the DoD and VA but includes all Government users such as HHS and FDA. As a final note, this guarantees unique and
positive identification of the cardholder.

Note: The FASC-N was designed to work with Physical Access Control Systems (PACS). Many of the legacy systems
include twisted pair cable and are challenged by serial communications. As a consequence, the FASC-N includes many
parity checks to ensure the integrity of the transmission. Moreover, the data was specified for serial transmission. This
necessitated a communications view when writing the functions. Also, note there are many values within the FASC-N
that are currently unused. These could be used to specify employee attributes to deep levels of granularity and still be
HSPD-12 compliant.

From FIPS 201-1
To better understand what the CAC/PIV card includes, several requirement document descriptions are included.

The PIV CHUID shall be accessible from both the contact and contactless interfaces of the PIV Card without card
activation. The PIV FASC-N shall not be modified post-issuance.

4.2.1 PIV CHUID Data Elements

In addition to the mandatory FASC-N that identifies a PIV Card, the CHUID shall include an expiration date data element
in machine readable format that specifies when the card expires. The expiration date format and encoding rules are as
specified in [SP 800-73]. For PIV Cards, the format of the asymmetric signature field is specified in Section 4.2.2.

The PIV Card shall store a corresponding X.509 certificate to support validation of the public key. The X.509 certificate
shall include the FASC-N in the subject alternative name extension using the pivFASC-N attribute to support physical
access procedures.

Certificates that contain the FASC-N in the subject alternative name extension, such as PIV Authentication certificates
and Card Authentication certificates, shall not be distributed publicly (e.g., via LDAP or HTTP accessible from the public
Internet).

2

FASC-N Identifier: The FASC-N shall be in accordance with [SP 800-73]. A subset of FASC-N, a FASC-N Identifier, is a
unique identifier as described in [SP 800-73].

From SP 800-73
The Federal Agency Smart Credential Number (FASC-N) shall be SCEPACS [4]. A subset of the FASC-N, the FASC-N
Identifier, shall be the unique identifier as described in [4, 6.6]: “The combination of an Agency Code, Credential Number
is a fully qualified number that is uniquely assigned to individual”.

Program Descriptions
Functions are provided to convert each value within the FASC-N into a number. With the current generation 64-bit
computers, even the longest number, the Personal Identifier, can be loaded into a single register or memory location as
a 64-bit integer (or less). In turn, this allows efficient computation. Also note, the FASC-N was specified for a serial
communications environment.

Agency Code
/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

AGENCY CODE

Identifies the government agency issuing the credential

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

int agency_code(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[1]) * 1000;
 temp += toint(fascn[2]) * 100;
 temp += toint(fascn[3]) * 10;
 temp += toint(fascn[4]);
 return(temp);
}

Convert Character
The FASC-N is using Binary Coded Decimals (BCDs) that include a parity bit. If you count the number of 1’s it must be an
odd number. Also note, the values ‘A’ through ‘F’ are normally valid BCD characters. However, the values for ‘B’, ‘D’,
and ‘F’ are used for special separator values. For example, unlike opening a file where we know where the first character
is, the FASC-N uses a start sentinel to identify the start of a new FASC-N. As the meaningful values are extracted from
the FASC-N, the Start Sentinel, Stop Sentinel, Field Separator, and the calculated LRC values have no meaning outside of
the FASC-N

3

/***

The convert number uses the PACS table as a
conversion function. This is a diagnostic function to display the
FASC-N values as characters.

Dependencies:

The external value for error must be defined

***/

 char convertCharacter(number)
 char number;

{

 char return_value;
 switch (number) {
 case 0x01: { return_value = '0'; /* 0000 0001 */
 break; }
 case 0x10: { return_value = '1'; /* 0001 0000 */
 break; }
 case 0x08: { return_value = '2'; /* 0000 1000 */
 break; }
 case 0x19: { return_value = '3'; /* 0001 1001 */
 break; }
 case 0x04: { return_value = '4'; /* 0000 0100 */
 break; }
 case 0x15: { return_value = '5'; /* 0001 0101 */
 break; }
 case 0x0d: { return_value = '6'; /* 0000 1101 */
 break; }
 case 0x1c: { return_value = '7'; /* 0001 1100 */
 break; }
 case 0x02: { return_value = '8'; /* 0000 0010 */
 break; }
 case 0x13: { return_value = '9'; /* 0001 0011 */
 break; }
 case 0x1a: { return_value = 'S'; /* Start Sentinel 0001 1010 */
 break; }
 case 0x16: { return_value = 'F'; /* Field Separator 0001 0110 */
 break; }
 case 0x1f: { return_value = 'E'; /* End Sentinel 0001 1111 */
 break; }
 default: { return_value = error; /* not a valid character */
 break; }
 }
 return(return_value);
}

Credential Number
/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

CREDENTIAL NUMBER

4

Encoded by the issuing agency. For a given system no duplicate
numbers are active

The value is returned as a long integer (32-bits in length)

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

Credential Number

In order to insure uniqueness of the fully qualified number assignment the Credential
Number assignment is the responsibility of the CIO for the organization referenced by
the Agency Code. Under the assigned Agency Code the CIO may not delegate the
responsibility for Agency policy ensuring unique fully qualified number assignment to
individuals. The authority to assign Credential Numbers may be delegated by the CIO.

Agency CIOs are responsible for insuring non-overlapping Credential Numbers are
issued for all interoperable systems issuing FASC-N codes within their Agency.

The combination of an Agency Code, System Code and Credential Number is a fully
qualified number that is uniquely assigned to a single individual.

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

long int credential_number(fascn)
 char fascn[40];
{
 long int temp;
 temp = toint(fascn[11]) * 100000;
 temp += toint(fascn[12]) * 10000;
 temp += toint(fascn[13]) * 1000;
 temp += toint(fascn[14]) * 100;
 temp += toint(fascn[15]) * 10;
 temp += toint(fascn[16]);
 return(temp);
}

Credential Series
/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

CREDENTIAL SERIES (SERIES CODE)
Field is available to reflect major system changes

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

5

int credential_series(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[18]);
 return(temp);
}

Expand FASC-N
This is perhaps the most challenging part of the FASC-N conversion. That is, the FASC-N is a 25-Byte value that includes
forty 5-bit characters. The characters are actually 4-bit Binary Coded Decimals (BCDs) that include a parity bit. In this
parity approach, the number of 1’s must be an odd number; thus making 5-bit characters. Although there are one 13
valid characters (‘A’, ‘C’, and ‘E’ are not used), they are converted back into the original 40-byte character array. In turn,
the functions defined that extract specific values are converted to numbers. The next figure depicts how the 5-bit
characters are combined into 8-bit bytes arrays. This necessitates breaking bytes into 5-bit chunks. For example, in the
next figure, the second 5-bit character has 3-bits in the first byte and 2-bits in the second.

8-bits (1 BYTE) 8-bits (1 BYTE) 8-bits (1 BYTE) 8-bits (1 BYTE) 8-bits (1 BYTE)

5-bits 5-bits 5-bits 5-bits 5-bits 5-bits 5-bits 5-bits

This is the only function that uses convertCharacter() and an error test was included. Also note, the last value, the LRC
checksum, is not returned as it is not needed for the data extraction. For poor communications, the algorithm is
included in the fascnOut program.

/***
*
* This function was developed on an Intel architecture. The big endian once little
* endian issues must match the bit flow as if it were a communications stream. That is, the
* fist bits to flow would be in character array location 0.
*
* The FASC-N encodes information as five-bit groups that are concatenated into as 25-Byte
* value. The purpose of the expand_fascn()function is to take the 25-byte FASC-N and expand it
* into a 40-Byte character array.

This function requires the value of error to be defined externally
*
**/
#define msk 0x80 /* this is the most significant bit mask */
#define addBit 0x01 /* this is a character with the least significant bit set */

int expand_fascn(fascn25, fascn40)
 char fascn25[25], fascn40[40];
 {
 int byte_count, bit_count, bit_index, expanded_index;
 char temp, temp2=0;

 for (bit_count = 0, byte_count = 0, expanded_index=0; byte_count < 25; byte_count++) {

6

 temp = fascn25[byte_count];
 for (bit_index=0; bit_index < 8; bit_index++) {
 if (msk & temp) /* is the most significant bit in temp a 1? */
 temp2 ^= addBit; /* Then change the least significant bit in temp2 to a 1 */

 temp <<= 1; /* shift left to prepare the next bit for testing */

 bit_count += 1;
 if ((bit_count % 5)== 0) { /* is this the 5th 1 or 0 printed? */
 temp2= convertCharacter(temp2);

 if (temp2==error)
 return(1);
 fascn40[expanded_index] = temp2; /* over write with value */
 expanded_index += 1; /* increment the expanded index */
 temp2 = 0;
 } /* end if */
 temp2 <<= 1;
 } /* end inner for loop */
 } /* end for */
 return(0);
 }

Individual Credential
/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

INDIVIDUAL CREDENTIAL ISSUE (CREDENTIAL CODE)
Recommend coding as a “1” always

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

int individual_credential_issue(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[20]);
 return(temp);
}

Organizational Category
/**

The following is taken from the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems Version 2.3

ORGANIZATIONAL IDENTIFIER
OC=1 – NIST SP800-87 Agency Code
OC=2 – State Code
OC=3 – Company Code
OC=4 – Numeric Country Code

For DoD, VA, and other federal users, a value returned of 1 indicated the
4 character Organizational Identifier will contain the issuing Agency's code

7

as specified in the National Institute of Standards & Technology (NIST)
Special Publication 800-87 (current revision is 1)

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

***/

int organizational_category(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[32]);
 return(temp);
}

Organizational Identifier

/**

When the Organizational Category is 1, then the Organizational
Identifier identifies the Government entity that issued the FASC-N.
The complete list is specified in the National Institute of Standards and Technology
(NIST) Special Publication 800-87 (current revision is 1). Some values are listed
below:

1200 AGRICULTURE, Department of
1300 COMMERCE, Department of
9700 DEFENSE, Department of (except military departments)
5700 AIR FORCE, Department of the (Headquarters, USAF)
2100 ARMY, Department of the (except Corps of Engineers Civil Program Financing)
1700 NAVY, Department of the
9100 EDUCATION, Department of
8900 ENERGY, Department of
7500 HEALTH AND HUMAN SERVICES, Department of
7000 HOMELAND SECURITY, Department of
8600 HOUSING AND URBAN DEVELOPMENT, Department of
1400 INTERIOR, Department of the
1500 JUSTICE, Department of
1600 LABOR, Department of
1900 STATE, Department of
6900 TRANSPORTATION, Department of
2000 TREASURY, Department of the
3600 VETERANS AFFAIRS, Department of
6800 ENVIRONMENTAL PROTECTION AGENCY
4700 GENERAL SERVICES ADMINISTRATION
8000 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
8800 NATIONAL ARCHIVES AND RECORDS ADMINISTRATION
4900 NATIONAL SCIENCE FOUNDATION
2400 OFFICE OF PERSONNEL MANAGEMENT
2800 SOCIAL SECURITY ADMINISTRATION

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

***/

8

int organizational_identifier(fascn)

 char fascn[40];
{
 int temp;
 temp = toint(fascn[33]) * 1000;
 temp += toint(fascn[34]) * 100;
 temp += toint(fascn[35]) * 10;
 temp += toint(fascn[36]);
 return(temp);
}

Personal Identifier
Two versions of the 10-character PI are included. In the first, just the character array is extracted. If the device running
the program cannot easily handle 64-bit integers, this may be a more efficient function to use. Note, when used
character arrays, programmers need to be mindful of string terminations and bounds checking.

Character Return
/***

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

PERSON IDENTIFIER:

Numeric Code used by the identity source to uniquely identify the token
carrier. (e.g. DoD EDI PN ID, TWIC credential number, NASA UUPIC)

Note: the DoD and VA use the EDI-PI to uniquely identify people.

Users of string functions should ensure the proper termination of the string function.

***/

int personalIdentifier(fascn, PI)
 char fascn[40], PI[10];
{
 int index;
 for (index=0; index<10; index++)
 PI[index] = fascn[22+index];
 return(0);
}

Number Return
/***

With the newer 64-bit computers and associated operating system, using 64-bit integers
should be more efficient than comparing character strings. The PI_number() takes the
10-digit Personal Identifier and converts it to a number. Note, the DoD and VA use an
EDI-PI that is a 9-gigit number with a concatenated checksum. Although the number only has 9-digits
of meaningful information, applications might have been expanded to accommodate 10-digit
numbers.

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

9

***/

long long PI_number(fascn)
 char fascn[40];
{
 int index;
 long long PI;
 PI = ((long long)toint(fascn[22])*1000000000);
 PI += ((long long)toint(fascn[23])*100000000);
 PI += ((long long)toint(fascn[24])*10000000);
 PI += ((long long)toint(fascn[25])*1000000);
 PI += ((long long)toint(fascn[26])*100000);
 PI += ((long long)toint(fascn[27])*10000);
 PI += ((long long)toint(fascn[28])*1000);
 PI += ((long long)toint(fascn[29])*100);
 PI += ((long long)toint(fascn[30])*10);
 PI += ((long long)toint(fascn[31]));
 return(PI);
}

Person Organization Association
/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

PERSON/ORGANIZATION ASSOCIATION CATEGORY
1 – Employee
2 – Civil
3 – Executive Staff
4 – Uniformed Service
5 – Contractor
6 – Organizational Affiliate
7 – Organizational Beneficiary

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

int person_organization_association(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[37]);
 return(temp);
}

System Code

/**

As noted in the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems

SYSTEM CODE

10

Identifies the system the card is enrolled in and is unique for each site

In order to ensure uniqueness of the fully qualified number assignment the System Code
number assignment is the responsibility of the CIO for the organization referenced by the
Agency Code. The authority to assign a single and blocks of System Codes may be
delegated by the CIO.

Agency CIOs are responsible for ensuring non-overlapping System Codes are issued for
all interoperable systems issuing SEIWG-012 credential number or FASC-N codes
within their Agency.

The combination of each Agency Code and System Code permit one million unique fully
qualified numbers. If a particular issuing system requires more than one million
credentials issued then that system would require an additional system code assigned
corresponding to each million credentials that will be issued by that system.

Dependencies:

Requires the toint() function that converts a character in the range '0' to '9' to an integer.
If the character converted is not '0' - '9' the function returns a value of 0.

**/

int system_code(fascn)
 char fascn[40];
{
 int temp;
 temp = toint(fascn[6]) * 1000;
 temp += toint(fascn[7]) * 100;
 temp += toint(fascn[8]) * 10;
 temp += toint(fascn[9]);
 return(temp);
}

To Integer Conversion

/**

This function converts a text character to an integer. Same function as found
in ctype.h

Note:

In SP 800-87 rev 1, many of the agency codes include the hexadecimal values
in the range 'A' to 'F'. However, the Technical Implementation Guidance:
Smart Card Enabled Physical Access Control Systems [PACS] uses the table below.
Thus, the FASC-N only recognizes 0 - 9. Moreover, the values for the Start Sentinel,
Field Separator, and End Sentinel correspond to three of these BCD values so they
cannot be used. Consequently, the default return is a "0" if the character is
unrecognized.

**/

int toint(ch)
 char ch;
{
 int return_value;
 switch (ch) {
 case '0': { return_value = 0;
 break; }

11

 case '1': { return_value = 1;
 break; }
 case '2': { return_value = 2;
 break; }
 case '3': { return_value = 3;
 break; }
 case '4': { return_value = 4;
 break; }
 case '5': { return_value = 5;
 break; }
 case '6': { return_value = 6;
 break; }
 case '7': { return_value = 7;
 break; }
 case '8': { return_value = 8;
 break; }
 case '9': { return_value = 9;
 break; }
 default: return_value = 0;
 }
 return(return_value);
}

Test Fixtures
Before the software could be tested, it was necessary to create a program to correct implementation of the FASC-N.

fascn
This C language program

fascn ac sc cn cs ici pi oc oi poa

Where ac is the Agency Code
 sc is the System Code
 cn it the Credential Number
 cs is the Credential Series
 ici is the Individual Credential Issue
 pi is the Personal Identifier
oc is the Organizational Category
 oi is the Organizational Identifier
 poa is the Person/Organization
 There are 9 arguments passed in the order listed and all are characters. Using the reference values provided in
Technical Implementation Guidance: Smart Card Enabled Physical Access Control Systems [PACS]

AGENCY CODE = 0032
SYSTEM CODE = 0001
CREDENTIAL# = 092446
CS = 0
ICI = 1
PI = 1112223333
OC= 1

12

OI=1223
POA=2
LRC = 7
Note: The LRC is a calculated valued used to ensure no communications errors occurred during transit.

The expected results listed in [PACS] is as follows

11010 00001 00001 11001 01000 10110 00001 00001 00001 10000 10110
00001 10011 01000 00100 00100 01101 10110 00001 10110 10000 10110
10000 10000 10000 01000 01000 01000 11001 11001 11001 11001 10000
10000 01000 01000 11001 01000 11111 11100

Running the compiled code produced the following:

fascn 0032 0001 092446 0 1 1112223333 1 1223 2

Note: the last value, 7, is a calculated result.

11010 00001 00001 11001 01000 10110 00001 00001 00001 10000 10110
00001 10011 01000 00100 00100 01101 10110 00001 10110 10000 10110
10000 10000 10000 01000 01000 01000 11001 11001 11001 11001 10000
10000 01000 01000 11001 01000 11111 11100
 This correlates to the reference example provided in [PACS].

fascnOut
The previous program was modified to create a test file fascn.dat that contains a 25-byte FASC-N consistent with the
values input. Note, the FASC-N creating function. Note, with the exception of the LRC routing, the fascn.c is not printed
in this description. The source file is included as an attachment.

Longitudinal Redundancy Character
The LRC code listed is extracted from the fascnOut.c program to illustrate how the checksum could be calculated. This is
informational only and does not impact extracting values from previously generated FASC-N values.

/**/
 /* */
 /* Calculate the Longitudinal Redundancy Character (checksum) */
 /* This function is a exclusive or (XOR) of all characters. When */
 /* the sum is taken, the parity must be calculated. To do this */
 /* the number of 1's are counted and then divided using MOD 2 */
 /* or radix 2 division. If the result is 1, then there are an odd */
 /* number of 1's so a 0 is the least significant bit. In */
 /* contrast, if the result is a 0, then a 1 is the parity bit and */
 /* must be the least significant bit. */
 /* */
 /**/

int lrc()
{
 int count;
 int ones = 0;
 char checksum, temp_char = 0;

13

 /* add up everything using XOR (mode 2 addition) */

 for (checksum=0, count=0; count < 39; count++)
 checksum ^= expanded_fascn[count];

 /* shit the temporary working value one place to the right */

 temp_char = (checksum >> 1); /* right shift to delete parity bit */

 /* sum the number of bits */

 for (count = 0; count < 4; count++) {

 if (temp_char & 0x01)
 ones += 1; /* increment the number of ones */
 temp_char >>= 1; /* right shift */
 }

 /* See if the number of 1's is an even or odd number where */
 /* a 1 indicates odd and a 0 even */

 if ((ones % 2) == 1)
 checksum &= 0x1e; /* Make the least significant bit 0 */
 else
 checksum |= 0x01; /* Make the least significant bit 1 */

 /* Expand the checksum (LRC) at offset 39 */

 expanded_fascn[39] = checksum;
 return(0);
}

fascnParse
This program combines each of the source files. After compilation, the program produces the following output:

The Personal Identifier is: 1112223333
The PI as a number is: 1112223333
The Agency Code is: 32
The System Code is: 1
The credential number is: 92446
The credential series is: 0
The individual credential issue is: 1
The Organizational Category is: 1
The Organizational Identifier is: 1223
The Person/Organization Association Category is: 2

Again, this is consistent with the [PACS] reference.

Source Code Listing

#include <stdio.h>

#define error 'Z' /* The error return value */

14

char padded_fascn[25]; /* This is the 25-byte FASC-N format on the CAC/PIV card */
char expanded_fascn[40]; /* The 40-byte expanded FASC-N format */
char PI[10]; /* A text return of the personal identifier. Note, programmers must check array
bounds */

/***

read_fascn() will read in the binary FASC-N from a default file fascn.dat
While this is adequate for testing, a different delivery is expected in practice.

***/

int read_fascn()
{
 int byteCount;
 FILE *fp;
 if ((fp = fopen("fascn.dat", "r")) == NULL)
 return(1);
 for(byteCount=0; byteCount<25; byteCount++)
 padded_fascn[byteCount] = fgetc(fp);
 fclose(fp);
 return(0);
}

#include "toint.c"
#include "convertCharacter
#include "expandFascn.c"
#include "personalIdentifier.c" /* text return of PI */
#include "PINumber.c" /* Number return of PI */
#include "agencyCode.c"
#include "systemCode.c"
#include "credentialNumber.c"
#include "credentialSeries.c"
#include "individualCredential.c"
#include "organizationalCategory.c" /* Is NIST SP 800-87 used? */
#include "organizationalIdentifier.c" /* Agency issuing FASC-N */
#include "poa.c"

/**

This program is a sample of pulling in each of the software programs. Note, the definitions
provided at the top along with the data structures. Note, a function to recalculate the
longitudinal redundancy character (LRC) was note performed. If needed, the fascn.c test fixture
includes a calculating function. Programmers are expected to define their own error value
with the proper programming scope. A default of 'Z' is used in this test.

/**/

main(argc, argv)
int argc;
char *argv[];
{

 read_fascn(); /* function to load in the FASC-N from a file */

 expand_fascn(padded_fascn, expanded_fascn);
 /* The personalIdentifier sets PI to the character array of the PI */
 personalIdentifier(expanded_fascn, PI);
 printf("The Personal Identifier is: %s\n",PI);

15

 printf("The PI as a number is: %lld\n",PI_number(expanded_fascn));
 printf("The Agency Code is: %d\n", agency_code(expanded_fascn));
 printf("The System Code is: %d\n", system_code(expanded_fascn));
 printf("The credential number is: %ld\n", credential_number(expanded_fascn));
 printf("The credential series is: %d\n", credential_series(expanded_fascn));
 printf("The individual credential issue is: %d\n", individual_credential_issue(expanded_fascn));
 printf("The Organizational Category is: %d\n", organizational_category(expanded_fascn));
 printf("The Organizational Identifier is: %d\n", organizational_identifier(expanded_fascn));
 printf("The Person/Organization Association Category is: %d\n",

 person_organization_association(expanded_fascn));
}

Agency Check
In this program, just a few functions are called to determine if the CAC/PIV card holder is VA or DoD. It also shows how
the cardholder’s ID number is extracted.

Outputs
Several tests were performed to illustrate how the various departments could be determined.

VA Test
Results from the fascnParse program
The Personal Identifier is: 1234567890
The PI as a number is: 1234567890
The Agency Code is: 32
The System Code is: 1
The credential number is: 92446
The credential series is: 0
The individual credential issue is: 1
The Organizational Category is: 1
The Organizational Identifier is: 3649
The Person/Organization Association Category is: 2
Results from the agencyCheck program
Agency = 3600
VA identified
The ID Number is: 1234567890
Note: the Organizational Identifier (OI) was changed to 3600 and the VA identified. The original OI, 3649, corresponded
to the VA’s Immediate Office of Assistant Secretary for Human Resources and Administration.

DoD Test
Results from the fascnParse program
The Personal Identifier is: 3445566778
The PI as a number is: 3445566778
The Agency Code is: 12
The System Code is: 232
The credential number is: 133401
The credential series is: 0
The individual credential issue is: 1
The Organizational Category is: 1

16

The Organizational Identifier is: 9765
The Person/Organization Association Category is: 2
Results from the agencyCheck program
Agency = 9700
DoD identified
The ID Number is: 3445566778
Note: the original OI, 9765, corresponded to the Pentagon Force Protection Agency.

Army Test
Results from the fascnParse program
The Personal Identifier is: 1015566778
The PI as a number is: 1015566778
The Agency Code is: 312
The System Code is: 132
The credential number is: 133401
The credential series is: 0
The individual credential issue is: 1
The Organizational Category is: 1
The Organizational Identifier is: 2130
The Person/Organization Association Category is: 2
Results from the agencyCheck program
Agency = 2100
Army identified
The ID Number is: 1015566778

Note: The original OI, 2130, is for the Army National Guard Bureau

Source Code
#include <stdio.h>

#define error 'Z' /* The error return value */
char padded_fascn[25]; /* This is the 25-byte FASC-N format on the CAC/PIV card */
char expanded_fascn[40]; /* The 40-byte expanded FASC-N format */
char PI[10]; /* A text return of the personal identifier. Note, programmers must check array bounds */

/***

read_fascn() will read in the binary FASC-N from a default file fascn.dat
While this is adequate for testing, a different delivery is expected in practice.

***/

int read_fascn()
{
 int byteCount;
 FILE *fp;
 if ((fp = fopen("fascn.dat", "r")) == NULL)
 return(1);
 for(byteCount=0; byteCount<25; byteCount++)
 padded_fascn[byteCount] = fgetc(fp);
 fclose(fp);
 return(0);

17

}

#include "toint.c"
#include "convertCharacter.c"
#include "expandFascn.c"
#include "PINumber.c" /* Number return of PI */
#include "organizationalCategory.c" /* Is NIST SP 800-87 used? */
#include "organizationalIdentifier.c" /* Agency issuing FASC-N */

/**

This program is a sample of using six of the C functions to determine if a person
is part of the DoD or VA and then what their ID number

/**/

main(argc, argv)
int argc;
char *argv[];
{
 int agency;
 read_fascn(); /* function to load in the FASC-N from a file */
 expand_fascn(padded_fascn, expanded_fascn);
 if(organizational_category(expanded_fascn) == 1)
 { agency = organizational_identifier(expanded_fascn);
 agency -= agency % 100; /* truncate to department number */
 printf("Agency = %d\n", agency);
 switch(agency){
 case 1700: {
 printf("Navy identified\n");
 break; }
 case 2100: {
 printf("Army identified\n");
 break; }
 case 3600: {
 printf("VA identified\n");
 break; }
 case 5700: {
 printf("Air Force identified\n");
 break; }
 case 9700: {
 printf("DoD identified\n");
 break; }
 }
 }
 printf("The ID Number is: %lld\n",PI_number(expanded_fascn));

}

	Preface
	From FIPS 201-1
	From SP 800-73

	Program Descriptions
	Agency Code
	Convert Character
	Credential Number
	Credential Series
	Expand FASC-N
	Individual Credential
	Organizational Category
	Organizational Identifier
	Personal Identifier
	Character Return
	Number Return

	Person Organization Association
	System Code
	To Integer Conversion

	Test Fixtures
	fascn
	fascnOut
	Longitudinal Redundancy Character

	fascnParse
	Source Code Listing

	Agency Check
	Outputs
	VA Test
	DoD Test
	Army Test

	Source Code

